首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
A reversible addition–fragmentation chain transfer (RAFT) polymerization technique was applied to graft polymerize brushes of poly(methyl methacrylate) (PMMA) and poly(poly(ethylene glycol) monomethacrylate) (PPEGMA) from poly(vinylidene fluoride) (PVDF) surfaces. PVDF surfaces were exposed to aqueous LiOH, followed by successive reductions with NaBH4 and DIBAL‐H to obtain hydroxyl functionality. Azo‐functionalities, as surface initiators for grafting, were immobilized on the PVDF surfaces by esterification of 4,4′‐azobis(4‐cyanopentanoic acid) and the surface hydroxyl groups. The chemical composition and surface topography of the graft‐functionalized PVDF surfaces were characterized by X‐ray photoelectron spectroscopy, attenuated total reflectance‐FTIR spectroscopy, and atomic force microscopy. Kinetics studies revealed a linear increase in the graft concentration of PMMA and PPEGMA with the reaction time, indicating that the chain growth from the surface was consistent with a “controlled” or “living” process. The living chain ends were used as the macroinitiator for the synthesis of diblock copolymer brushes. Water contact angles on PVDF films were reduced by surface grafting of PEGMA and MMA. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3071–3082, 2006  相似文献   

2.
Novel cylindrical polymer brushes consisting of poly(diphenylacetylene) main chain and poly(poly(ethylene glycol) methyl ether monomethacrylate) (PPEGMA) side chains were synthesized by the diphenylacetylene macromonomer or side chain initiated atom transfer radical polymerization (ATRP) of poly(ethylene glycol) methyl ether monomethacrylate (PEGMA) from an bromo isobutyryl-bearing poly(diphenylacetylene) (poly(BrDPA)) method. The diphenylacetylene macromonomer, namely, DPA-PPEGMA, were prepared by the ATRP of PEGMA from bromo isobutyryl-bearing diphenylacetylene. DPA-PPEGMA was polymerized successfully with WCl6-Ph4Sn catalyst to give high molecular weight polymer brushes poly(DPA-PPEGMA). Meanwhile, polymer brushes (PDPA-g-PPEGMA) were obtained by ATRP of PEGMA from poly(BrDPA). The molecular weight of the side chains of PPEGMA could be controlled simply by modulating the ATRP time. The macromonomer and polymer brushes are soluble in nonpolar solvents such as toluene and chloroform. The polymers of poly(BrDPA) and poly(DPA-PPEGMA) absorb in the longer wavelength region, with two peaks at around 370 and 414 nm. The polymers are thermally stable and exhibit double crystallization and melting peaks during the cooling and heating scans.  相似文献   

3.
We report the synthesis of random polyampholyte brushes containing 2‐(dimethylamino)ethyl methacrylate (DMAEMA) and methacrylic acid (MAA). The preparation of polyampholyte brushes is performed by the “grafting from” strategy using surface‐initiated atom transfer radical polymerization (ATRP). The first step consists in the formation of the self‐assembled monolayer of the ATRP initiator. Secondly, the chains are grown from the surface by controlled/“living” radical polymerization. The random copolymer brushes and the corresponding homopolymers brushes containing 2‐(dimethylamino)ethyl methacrylate and tert‐butyl methacrylate (tBuMA) are prepared. The last step is the deprotection of the tBuMA form to the MAA segment by in situ hydrolysis reaction. The annealed DMAEMA group can also be converted to the quenched form by in situ quaternization reaction. This results in the formation of “annealed” and “semiannealed” polyampholyte brushes. The “annealed” polyampholyte corresponds to the random copolymer that contains only annealed units, weak acid and weak base. The “semiannealed” polyampholyte consists of the mixture of annealed (weak acid) and quenched (quaternized segment) units. Polyampholyte brushes with various grafting densities are synthesized and carefully characterized using surface techniques such as ellipsometry and FTIR‐ATR. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 4305–4319, 2008  相似文献   

4.
This work reports the surface‐initiated atom transfer radical polymerization (ATRP) from hydrogen plasma‐treated porous poly(tetrafluoroethylene) (PTFE) membranes using the C? F groups as initiators. Hydrogen plasma treatment on PTFE membrane surfaces changes their chemical environment through defluorination and hydrogenation reactions. With the hydrogen plasma treatment, the C? F groups of the modified PTFE membrane surface become effective initiators of ATRP. Surface‐initiated ATRP of poly(ethylene glycol) methacrylate (PEGMA) is carried out to graft PPEGMA chains to PTFE membrane surfaces. The chain lengths of poly(PEGMA) (PPEGMA) grafted on PTFE surfaces increase with increasing the reaction time of ATRP. Furthermore, the chain ends of PPEGMA grown on PTFE membrane surfaces then serve as macroinitiators for the ATRP of N‐isopropylacrylamide (NIPAAm) to build up the PPEGMA‐b‐PNIPAAm block copolymer chains on the PTFE membrane surfaces. The chemical structures of the modified PTFE membranes are characterized using X‐ray photoelectron spectroscopy. The modification increases the surface hydrophilicity of the PTFE membranes with reductions in their water‐contact angles from 120° to 60°. The modified PTFE membranes also show temperature‐responsive properties and protein repulsion features owing to the presence of PNIPAAM and PPEGMA chains. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2076–2083, 2010  相似文献   

5.
A series of poly(amino (meth)acrylate) brushes, poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA), poly(2‐(diethylamino)ethyl methacrylate) (PDEAEMA), poly(2‐(dimethylamino)ethyl acrylate) (PDMAEA), poly(2‐(tert‐butylamino)ethyl methacrylate) (PTBAEMA), has been synthesized via surface‐confined controlled/living radical polymerizations using surface‐confined initiator from silane self‐assembled monolayers (SAMs) on silicon (Si) wafer substrates. Chemical methods and efficacies for two types of living radical polymerization, atom transfer radical (ATRP) and single electron transfer (SET‐LRP), are described and contrasted for the surface confined polymerization of poly(amino (meth)acrylate)s. Effects of solvent, catalyst/ligand system, and temperature on polymerization success were examined. Chemical compositions after each reaction step were characterized with FTIR spectroscopy, contact angle goniometry, and X‐ray photoelectron spectroscopy while the SAM and polymer brush thicknesses were measured with spectroscopic ellipsometry. For the first time, this study demonstrates successful surface‐confined polymerization of a series of poly(amine (meth)acrylate) brushes from Si‐SAM substrates using a copper metal electron donor catalyst. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 6552–6560, 2009  相似文献   

6.
A new class of temperature and pH dual‐responsive and injectable supramolecular hydrogel was developed, which was formed from block copolymer poly(ethylene glycol)‐block‐poly[(2‐dimethylamino)ethyl methacrylate] (PEG‐b‐PDMAEMA) and α‐cyclodextrin (α‐CD) inclusion complexes (ICs). The PEG‐b‐PDMAEMA diblock copolymers with different ratio of ethylene glycol (EG) to (2‐dimethylamino)ethyl methacrylate (DMAEMA) (102:46 and 102:96, respectively) were prepared by atom transfer radical polymerization (ATRP). 1H NMR measurement indicated that the ratio of EG unit to α‐CD in the resulted ICs was higher than 2:1. Thermal analysis showed that thermal stability of ICs was improved. The rheology studies showed that the hydrogels were temperature and pH sensitive. Moreover, the hydrogels were thixotropic and reversible. The self‐assembly morphologies of the ICs in different pH and ionic strength environment were studied by transmission electron microscopy. The formed biocompatible micelles have potential applications as biomedical and stimulus‐responsive material. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2143–2153, 2010  相似文献   

7.
Thin polymer films that prevent the adhesion of bacteria are of interest as coatings for the development of infection‐resistant biomaterials. This study investigates the influence of grafting density and film thickness on the adhesion of Staphylococcus epidermidis to poly(poly(ethylene glycol)methacrylate) (PPEGMA) and poly(2‐hydroxyethyl methacrylate) (PHEMA) brushes prepared via surface‐initiated atom transfer radical polymerization (SI‐ATRP). These brushes are compared with poly(ethylene glycol) (PEG) brushes, which are obtained by grafting PEG onto an epoxide‐modified substrate. Except for very low grafting densities (ρ = 1%), crystal violet staining experiments show that the PHEMA and PPEGMA brushes are equally effective as the PEG‐modified surfaces in preventing S. epidermis adhesion and do not reveal any significant variations as a function of film thickness or grafting density. These results indicate that brushes generated by SI‐ATRP are an attractive alternative to grafted‐onto PEG films for the preparation of surface coatings that resist bacterial adhesion.

  相似文献   


8.
High capacity, charge-selective protein uptake by polyelectrolyte brushes   总被引:2,自引:0,他引:2  
Surface plasmon resonance was used to measure binding of proteins from solution to poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes end-grafted from gold surfaces by atom transfer radical polymerization (ATRP). PDMAEMA brushes were prepared with a variety of grafting densities and degrees of polymerization. These brushes displayed charge selective protein uptake. The extent of uptake for net negatively charged bovine serum albumin (BSA) scaled linearly with the surface mass concentration of grafted PDMAEMA, regardless of grafting density. BSA was bound at a constant ratio of 120 DMAEMA monomer units per protein molecule for all brushes examined. The equivalent three-dimensional concentration of BSA bound in the brush (i.e., the bound BSA surface excess concentration divided by the brush thickness) decreased monotonically with decreasing grafting density. The concentration of BSA bound within brushes prepared at higher grafting densities was comparable with the aqueous protein solubility limit. BSA desorption from the brush required changes in solution pH and/or ionic strength to eliminate its net electrostatic attraction to PDMAEMA. Net positively charged lysozyme was completely rejected by the PDMAEMA brushes.  相似文献   

9.
Peptide–polymer conjugate consisting of a sequence‐defined tripeptide and poly(2‐(dimethylamino)ethyl methacrylate) (PDMAEMA) is synthesized by a simple “grafting from” atom transfer radical polymerization (ATRP) approach. The ATRP of PDMAEMA using peptide‐macroinitiator and CuBr/1,1,4,7,10,10‐hexamethyltriethylenetetramine system in anisole follows pseudo first order kinetics up to a conversion of about 25% within a time span of 125 min. The attachment of peptide moiety at the end of PDMAEMA chain is confirmed from MALDI‐TOF‐MS and circular dichroism analyses. The self‐assembly of as‐synthesized peptide‐PDMAEMA conjugate in organic solvents leads to the formation of spherical nanoparticles as observed through FESEM. Peptide‐PDMAEMA conjugate become soluble in water due to the protonation of the pendent —N(CH3)2 moiety of DMAEMA group of the conjugate. Owing to the amphiphilic nature of the protonated conjugate (peptide‐PDMAEMAH), it also undergoes self‐aggregation in water into nanostructures of various morphologies such as dendrite, small sphere and large sphere at pHs of 2, 8, and 10, respectively. Peptide‐PDMAEMA‐IBu conjugate obtained by the post‐modification of —N(CH3)2 moiety of DMAEMA group of the conjugate with n‐butylbromide also undergoes self‐aggregation into dendritic nanostructures in water. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3286–3297  相似文献   

10.
Well-defined poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes were synthesized on the surface of polystyrene latex particles by atom transfer radical polymerization (ATRP). It was found that the surface-initiated polymerization of DMAEMA catalyzed by CuCl/CuCl(2)/bpy was under good control in the solvent of acetone/water at ambient temperature (35 degrees C). High-density PDMAEMA brushes with low polydispersity (PDI 1.21) were obtained. TEM results demonstrate that the PDMAEMA-grafted particles have core-shell structure. Dynamic light scattering studies indicate that the particles with PDMAEMA brushes are both pH and temperature responsive.  相似文献   

11.
大分子单体通过两种可控聚合方法, 即开环易位聚合(ROMP)和原子转移自由基聚合(ATRP)的联用, 合成一种新型两亲性接枝聚合物刷. 具有高环张力的降冰片烯单侧链大分子单体norbornene-graft-poly(ε-caprolactone)/Br (PCL- NBE-Br)首先进行ROMP反应, 生成聚合物主链, 每个单体单元上含有一条PCL链和一个溴官能团; 然后用含溴的ROMP聚合物poly(norbornene)-graft-poly(ε-caprolactone)/Br (PCL-PNBE-Br)作为大分子引发剂引发单体2-(dimethyl- amino)ethyl methacrylate)的ATRP反应, 生成结构明确的高密度两亲性接枝聚合物刷poly(norbornene)-graft-poly(ε- caprolactone)/poly(2-(dimethylamino)ethyl methacrylate) (PCL-PNBE-PDMAEMA), 其主链每个单体单元上均含有一条疏水性PCL接枝链和一条亲水性PDMAEMA接枝链. 最后, 研究此类高密度两亲性接枝聚合物刷的自组装行为, 用动态激光光散射(DLS)研究其在混合溶剂(THF/H2O)中的胶束行为, 考察胶束溶液的浓度以及不同长度的亲水性接枝链对胶束尺寸的影响; 利用透射电镜(TEM)观察胶束为球形, 具有类似线团或草莓状的形态.  相似文献   

12.
Herein we describe a new strategy for producing micelles with mixed coronal chains. This method involves attachment of an atom transfer radical polymerization (ATRP) initiator at the interface of a micelle and preparation of poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA) brushes at the interface by a "grafting from" method. Poly(ethylene glycol)- block-polystyrene (PEG- b-PS) diblock copolymer was achieved by ATRP. After the sulfonation reaction PS blocks were partly sulfonated. In aqueous solution at low pH the sulfonated block copolymer self-assembled into micelles with PS cores and PEG coronae and sodium 4-styrenesulfonate groups were distributed at the interfaces of the micelles. An ATRP initiator consisting of a quaternary ammonium salt moiety and a 2-bromo-2-methyl propionate moiety was ion exchanged onto the interface of the micelle. ATRP of DMAEMA was initiated at the interface, and micelles with PEG/PDMAEMA mixed coronal chains were prepared by ATRP. The structures of the micelles were characterized by dynamic light scattering (DLS), transmission electron microscopy (TEM), and zeta potential measurements. The size and morphology of the micelles were controlled by pH in aqueous solution. At high pH, PDMAEMA brushes collapse, forming nanodomains on the surface of the micelles. PDMAEMA brushes in the coronae of the micelles could be used as a template for preparation of gold nanoparticles.  相似文献   

13.
Poly(vinylidene fluoride) (PVDF) is known for its biocompatibility, piezo and pyro‐electricity, and membrane forming capability. In order to tune its properties, modification through grafting from approach by atom transfer radical polymerization (ATRP) is preferred. Hydrophilic polymers like poly(ethylene glycol) methacrylate, poly(methacrylic acid), poly(dimethylaminoethyl methacrylate) (PDMAEMA), and so forth have been anchored from PVDF backbone in order to make permeation of water molecules through the PVDF based membranes. The successful solution grafting of PDMAEMA chains from PVDF backbone by ATRP resulted appreciable graft conversion and hence its bulk properties showed a significant change. This water soluble graft copolymer shows incredible mechanical and adhesive properties. PVDF‐g‐poly(n‐butyl methacrylate) generates honey‐comb porous film using “breath figure” technique. Recently, they have used further improvement of grafting where model ATRP initiators are anchored using atom transfer radical coupling and used them as macroinitiators for grafting. This approach simplified the grafting reactions even more and enabled successful grafting of a large number of monomers under relatively less drastic conditions with appreciable conversion compared with the previous conditions. This technique has resulted interesting solution properties, ion and electron conducting PVDF, antifouling membrane, super glue and super tough materials, capable of generating metal nanoparticles tunable with pH and temperature. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 2569–2584  相似文献   

14.
A simple one-step method for the chloromethylation of polyimide (PI) under mild conditions was used to introduce benzyl chloride groups into PI film surface. Covalently tethered hydrophilic polymer brushes of poly(ethylene glycol) monomethacrylate (PEGMA) and glycidyl methacrylate (GMA) were prepared via surface initiated atom-transfer radical polymerization (ATRP) from the chloromethylated PI surfaces using benzyl chloride groups as the active ATRP initiators. A kinetics study indicated that the chain growth from the films was in agreement with a controlled process. The dormant chain ends of the grafted polymer on the PI films could reinitiate the consecutive surface-initiated ATRP to prepare surface-functionalized diblock copolymer brushes on the PI films. The modified surface was characterized by X-ray photoelectron spectroscopy (XPS) after each modification stage. Protein adsorption experiments indicated that the PI-P(PEGMA) membrane exhibited substantially improved anti-fouling properties compared to the pristine PI surface.  相似文献   

15.
Iron‐mediated atom transfer radical polymerization using activators generated by electron transfer directly from the secondary fluorine atoms on the poly(vinylidene fluoride) (PVDF) backbone, using methyl methacrylate (MMA) and poly (ethylene glycol) methyl ether methacrylate (PEGMA) as the monomers, FeCl3·6H2O as the catalyst, PPh3 as the ligand, and vitamin C as the reducing agent, was demonstrated in the presence of limited amounts of air. The successful syntheses of the corresponding graft copolymers PVDF‐g‐PMMA and PVDF‐g‐PPEGMA were characterized by nuclear magnetic resonance, Fourier transform infrared and X‐ray photoelectron spectroscopy, respectively. The graft copolymers PVDF‐g‐PPEGMA can be readily cast into porous hydrophilic microfiltration membranes by phase inversion in an aqueous medium. The morphologies were characterized by scanning electron microscopy. The surface and bulk hydrophilicity were evaluated on the basis of static water contact angle and the steady adsorption of bovine serum albumin. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

16.
Polymers derived from bio‐acceptable poly(methyl methacrylate) (PMMA), poly(2‐methoxyethyl acrylate) (PMEA), and poly(oligo(ethylene glycol) methyl ether methacrylate) (PPEGMA) have been prepared via atom transfer radical polymerization (ATRP) utilizing an initiator prepared from a fluoroalkoxy‐terminated oligoethylene glycol. Polymerizations are controlled as seen by both linear first‐order kinetics and molecular weight evolution coupled with low polydispersities (<1.25) with respect to conversion. A range of ligands have been used depending upon the nature of the monomer: N‐(n‐propyl)‐2‐pyridyl‐methanimine with the methacrylates MMA and PEGMA and 1,1,4,7,10,10‐hexamethyltriethylene tetramine (HMTETA) with MEA. In all cases the use of the fluorinated initiator results in a lower apparent rate of propagation (kpapp) as compared with the more conventional and nonfluorinated initiator, ethyl 2‐bromoisobutyrate. The initiator generally also serves as an internal plasticizer lowering the glass transition temperature from the parent polymers. The surface characteristics of the fluoroinitiator containing polymers are altered compared with the nonfluorinated analogues. This is reflected in a significant increase in the advancing water contact angles of all fluoro‐containing polymers. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 5770–5780, 2007  相似文献   

17.
采用表面引发的原子转移自由基聚合法(ATRP)在聚偏二氟乙烯(PVDF)表面制备结构可控的聚甲基丙烯酸甲酯刷。通过碱处理和紫外光照溴代的方法,将ATRP引入到PVDF表面; 然后采用ATRP法将甲基丙烯酸甲酯接枝到溴代的PVDF表面。采用傅里叶变换红外光谱和X-射线光电子能谱对改性前后PVDF表面的结构进行了表征。结果表明甲基丙烯酸甲酯成功地接枝到了PVDF表面。  相似文献   

18.
A versatile family of cationic methacrylate copolymers containing varying amounts of primary and tertiary amino side groups were synthesized and investigated for in vitro gene transfection. Two different types of methacrylate copolymers, poly(2‐(dimethylamino)ethyl methacrylate)/aminoethyl methacrylate [P(DMAEMA/AEMA)] and poly(2‐(dimethylamino)ethyl methacrylate)/aminohexyl methacrylate [P(DMAEMA/AHMA)], were obtained by reversible addition‐fragmentation chain transfer (RAFT) copolymerization of dimethylaminoethyl methacrylate (DMAEMA) with N‐(tert‐butoxycarbonyl)aminoethyl methacrylate (Boc‐AEMA) or N‐(tert‐butoxycarbonyl)aminohexyl methacrylate (Boc‐AHMA) followed by acid deprotection. Gel permeation chromatography (GPC) measurements revealed that Boc‐protected methacrylate copolymers had Mn in the range of 16.1–23.0 kDa and low polydispersities of 1.12–1.26. The copolymer compositions were well controlled by monomer feed ratios. Dynamic light scattering and agarose gel electrophoresis measurements demonstrated that these PDMAEMA copolymers had better DNA condensation than PDMAEMA homopolymer. The polyplexes of these copolymers revealed low cytotoxicity at an N/P ratio of 3/1. The in vitro transfection in COS‐7 cells in serum free medium demonstrated significantly enhanced (up to 24‐fold) transfection efficiencies of PDMAEMA copolymer polyplexes as compared with PDMAEMA control. In the presence of 10% serum, P(DMAEMA/AEMA) and P(DMAEMA/AHMA) displayed a high transfection activity comparable with or better than 25 kDa PEI. These results suggest that cationic methacrylate copolymers are highly promising for development of safe and efficient nonviral gene transfer agents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2869–2877, 2010  相似文献   

19.
Surface-initiated atom transfer radical polymerization (ATRP) was used to graft hydrophilic comb-like poly((poly(ethylene glycol) methyl ether methacrylate), or P(PEGMA), brushes from chloromethylated poly(phthalazinone ether sulfone ketone) (CMPPESK) membrane surfaces. Prior to ATRP, chloromethylation of PPESK was beforehand performed and the obtained CMPPESK was prepared into porous membranes by phase inversion process. It was demonstrated that the benzyl chloride groups on the CMPPESK membrane surface afforded effective macroinitiators to graft the well-defined polymer brushes. Attenuated total reflectance Fourier transform infrared (ATR-FTIR) spectroscopy and X-ray photoelectron spectroscopy (XPS) confirmed the grafting of P(PEGMA) chains. Water contact angle measurements indicated that the introduction of P(PEGMA) graft chains promoted remarkably the surface hydrophilicity of PPESK membranes. The effects of P(PEGMA) immobilization on membrane morphology, permeability and fouling resistance were investigated. It was found that the comb-like P(PEGMA) grafts brought smaller pore diameters and higher solute rejections to PPESK membranes. The results of dynamic anti-fouling experiments showed the anti-fouling ability of the membranes was significantly improved after the grafting of P(PEGMA) brushes.  相似文献   

20.
The poly(ethylene glycol)/poly(2‐(N,N‐dimethylamino)ethyl methacrylate) (PEG/PDMAEMA) double hydrophilic block copolymers were synthesized by atom transfer radical polymerization using mPEG‐Br or Br‐PEG‐Br as macroinitiators. The narrow molecular weight distribution of PEG/PDMAEMA block copolymers was identified by gel permeation chromatography results. The thermosensitivity of PEG/PDMAEMA block copolymers in aqueous solution was revealed to depend significantly on pH, ionic strength, chain structure, and concentration of the block copolymers. By optimizing these factors, the cloud point temperature of PEG/PDMAEMA block copolymers can be limited within body temperature range (30–37 °C), which suggests that PEG/PDMAEMA block copolymers could be a good candidate for drug delivery systems. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 503–508, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号