首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Isotactic polypropylene‐vapor grown carbon nanofiber composites containing various fractions of carbon nanofibers, ranging from 0 to 20 wt %, have been prepared. Raman spectroscopy was used to analyze the effect of the dispersion of carbon nanofibers within polypropylene and the interactions between carbon nanofibers and macromolecular chains. The as‐recorded Raman spectra have been successfully fitted by a linear convolution of Lorentzian lines. Changes of the Raman lines parameters (position, intensity, width, and area) of polypropylene and carbon nanofibers were analyzed in detail. The Raman spectra of the polymeric matrix—at low concentrations of nanofibers—show important modifications that indicate strong interactions between carbon nanofibers and the polymeric matrix reflecting by vibrational dephasing of macromolecular chains. The Raman spectrum of carbon nanofibers is sensitive to the loading with carbon nanofibers, showing changes of the resonance frequencies, amplitudes, and width for both D‐ and G‐bands. Raman data reveals the increase of the disorder, as the concentration of carbon nanofibers is increased. The presence of the typical ESR line assigned to conducting electrons delocalized over carbon nanofibers is confirmed and the presence of a spurious magnetic line due to catalyst's residues is reported. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1644–1652, 2009  相似文献   

2.
Uniform dispersion of graphene nanosheets (GNS) in a polymer matrix with strong filler–matrix interfacial interaction, preserving intrinsic material properties of GNS, is the critical factor for application of GNS in polymer composites. In this work, a novel reactive copolymer VCz–GMA containing carbazole and epoxide group was designed, synthesized and employed to noncovalently functionalize GNS for preparing epoxy nanocomposites with enhanced mechanical properties. The presence of carbazole groups in VCz–GMA enables the tight absorption of copolymer on to graphene surface via π–π stacking interaction, as evidenced by Raman and fluorescence spectroscopy, whereas the epoxide segments chemically reacts with the epoxy matrix, improving the compatibility and interaction of graphene with epoxy matrix. As a result, the VCz–GMA–GNS/epoxy composite showed a remarkable enhancement in both mechanical and thermal property than either the pure epoxy or the graphene/epoxy composites. The incorporation of 0.35 wt % VCz–GMA–GNS yields a tensile strength of 55.72 MPa and elongation at break of 3.45, which are 42 and 191% higher than the value of pure epoxy, respectively. Increased glass transition temperature and thermal stability of the epoxy composites were also observed. In addition, a significant enhancement in thermal conductivity was achieved with only 1 wt % VCz–GMA–GNS loading. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 2776–2785  相似文献   

3.
Conductive polymer composites possessing a low percolation‐threshold concentration as a result of double percolation of a conductive filler and its host phase in an immiscible polymer blend afford a desirable alternative to conventional composites. In this work, blends of high‐density polyethylene (HDPE) and ultrahigh molecular weight polyethylene (UHMWPE) were used to produce ternary composites containing either carbon black (CB), graphite (G), or carbon fiber (CF). Blend composition had a synergistic effect on electrical conductivity, with pronounced conductivity maxima observed at about 70–80 wt % UHMWPE in the CB and G composites. A much broader maximum occurred at about 25 wt % UHMWPE in composites prepared with CF. Optical and electron microscopies were used to ascertain the extent to which the polymers, and hence filler particles, are segregated. Differential scanning calorimetry of the composites confirmed that the constituent polymers are indistinguishable in terms of their thermal signatures and virtually unaffected by the presence of any of the fillers examined here. Dynamic mechanical analysis revealed that CF imparts the greatest stiffness and thermal stability to the composites. © 2002 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 40: 1013–1023, 2002  相似文献   

4.
Highly oriented, large area continuous composite nanofiber sheets made from surface-oxidized multiwalled carbon nanotubes (MWNTs) and polyacrylonitrile (PAN) were successfully developed using electrospinning. The preferred orientation of surface-oxidized MWNTs along the fiber axis was determined with transmission electron microscopy and electron diffraction. The surface morphology and height profile of the composite nanofibers were also investigated using an atomic force microscope in tapping mode. For the first time, it was observed that the orientation of the carbon nanotubes within the nanofibers was much higher than that of the PAN polymer crystal matrix as detected by two-dimensional wide-angle X-ray diffraction experiments. This suggests that not only surface tension and jet elongation but also the slow relaxation of the carbon nanotubes in the nanofibers are determining factors in the orientation of carbon nanotubes. The extensive fine absorption structure detected via UV/vis spectroscopy indicated that charge-transfer complexes formed between the surface-oxidized nanotubes and negatively charged (-CN[triple bond]N:) functional groups in PAN during electrospinning, leading to a strong interfacial bonding between the nanotubes and surrounding polymer chains. As a result of the highly anisotropic orientation and the formation of complexes, the composite nanofiber sheets possessed enhanced electrical conductivity, mechanical properties, thermal deformation temperature, thermal stability, and dimensional stability. The electrical conductivity of the PAN/MWNT composite nanofibers containing 20 wt % nanotubes was enhanced to approximately 1 S/cm. The tensile modulus values of the compressed composite nanofiber sheets were improved significantly to 10.9 and 14.5 GPa along the fiber winding direction at the MWNT loading of 10 and 20 wt %, respectively. The thermal deformation temperature increased with increased MWNT loading. The thermal expansion coefficient of the composite nanofiber sheets was also reduced by more than an order of magnitude to 13 x 10(-6)/ degrees C along the axis of aligned nanofibers containing 20 wt % MWNTs.  相似文献   

5.
Polymer nanocomposites composed of poly(styrene‐ran‐vinyl phenol) (PSVPh) copolymers and 5 wt % multi‐walled carbon nanotubes (MWNTs) were prepared by three different methods, including melt‐mixing and precipitation. The MWNTs were either oxidized to incorporate oxygenated defects or utilized as received. The mechanical properties of the nanocomposites were measured by dynamic mechanical analysis (DMA), and the extent of intermolecular hydrogen bonding between MWNTs and PSVPh was quantified by infrared (IR). Our DMA results suggest that melt‐mixing leads to more stable morphologies of the final nanocomposites than precipitation. Additionally, the IR analysis of the nanocomposites indicates melt‐mixing can result in the formation of more intermolecular hydrogen bonding between the MWNTs and PSVPh than precipitation, and thus suggests that melt‐mixing leads to more reproducible mechanical properties than precipitation. Our DMA and IR results may provide guidelines to realize the desired morphologies and to improve the properties of polymer carbon nanotube nanocomposites by optimizing intermolecular interactions between MWNTs and polymers using processing. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 1747–1759, 2008  相似文献   

6.
Styrene and 4‐vinylbenzocyclobutene (vinyl‐BCB) random copolymers were prepared by free radical polymerization and studied for suitability as a dielectric material for microelectronic applications. The percentage of vinyl‐BCB in the copolymer was varied from 0 to 26 mol % to optimize the physical and mechanical properties of the cured copolymer as well as the cost. Copolymer in which 22 mol % of vinyl‐BCB was incorporated along with styrene produced a thermoset polymer which, after cure, did not show a Tg before decomposition at about 350 °C. The polymeric material has a very low dielectric constant, dissipation factor, and water uptake. The fracture toughness of the copolymer was improved with the addition of 20 wt % of a star‐shaped polystyrene‐block‐polybutadiene. Blends of the poly(styrene‐co‐vinyl‐BCB) with the thermoplastic elastomer provided material that maintained high Tg of the cured copolymer with only a slight decrease in thermal stability. The crosslinked styrenic polymer and toughened blends possess many properties that are desirable for high frequency‐high speed mobile communication applications. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 46: 2799–2806, 2008  相似文献   

7.
This article highlights the history, synthetic routes, material properties, and scope of ethylene/vinyl acetate copolymer (EVA)/clay nanocomposites. These nanocomposites of EVAs are achieved with either unmodified or organomodified layered silicates with different methods. The structures of the resulting polymer/inorganic nanocomposites have been characterized with X‐ray diffraction, scanning electron microscopy, and transmission electron microscopy. The addition of a small amount of clay, typically less than 8 wt %, to the polymer matrix unusually promotes the material properties, such as the mechanical, thermal, and swelling properties, and increases the flame retardancy of these hybrids. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 471–480, 2006  相似文献   

8.
The influence of the morphology on the mechanical properties of binary styrene–butadiene (SB) triblock copolymer blends of a thermoplastic block copolymer and a thermoplastic elastomer (TPE) with different molecular architectures was studied with bulk samples prepared from toluene. Both block copolymers contained SB random copolymer middle blocks, that is, the block sequence S–SB–S. The two miscible triblock copolymers were combined to create a TPE with increased tensile strength without a change in their elasticity. The changes in the equilibrium morphology of the miscible triblock copolymer blends as a function of the TPE content (lamellae, bicontinuous morphology, hexagonal cylinders, and worms) resulted in a novel morphology–property correlation: (1) the strain at break and Young's modulus of blends with about 20 wt % TPE were larger than those of the pure thermoplastic triblock copolymer; (2) at the transition from bicontinuous structures to hexagonal structures (~35 wt % TPE), a change in the mechanical properties from thermoplastic to elastomeric was observed; and (3) in the full range of wormlike and hexagonal morphology (60–100 wt % TPE), elastomeric properties were observed, the strength greatly increasing and high‐strength elastomers resulting. © 2005 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 43: 429–438, 2005  相似文献   

9.
High energy ball milling (HEBM) was utilized, as an innovative process, to incorporate carbon nanotubes (CNTs) into a polyethylene (PE) matrix avoiding: high temperatures, solvents, ultrasonication, chemical modification of carbon nanotubes. Composites with 1, 2, 3, 5, and 10 wt % of carbon nanotubes were prepared. Films were obtained melting the powders in a hot press. Morphology and physical properties (thermal, mechanical, electrical properties) were evaluated. The used processing conditions allowed to obtain a satisfactory level of dispersion of CNTs into the PE matrix with a consequent improvement of the physical properties of the samples. The thermal degradation was significantly delayed already with 1–2% wt of CNTs. The mechanical properties resulted greatly improved for low filler content (up to 3% wt). The electrical measurements showed a percolation threshold in the range 1–3 wt % of CNTs. © 2007 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 45: 597–606, 2007  相似文献   

10.
The melt mixing technique was used to prepare various polypropylene (PP)‐based (nano)composites. Two commercial organoclays (denoted 20A and 30B) served as the fillers for the PP matrix, and two different maleated (so‐called) compatibilizers (denoted PP‐MA and SMA) were employed as the third component. The results from X‐ray diffraction (XRD) and transmission electron microscope (TEM) experiments revealed that 190 °C was an adequate temperature for preparing the nanocomposites. Nanocomposites were achieved only if specific pairs of organoclay and compatibilizer were simultaneously incorporated in the PP matrix. For example, PP/20A(5 wt %)/PP‐MA(10 wt %) and PP/30B(5 wt %)/SMA(5 wt %) composites exhibited nanoscaled dispersion of 20A or 30B in the PP matrix. Differential scanning calorimetry (DSC) results indicated that the organoclays served as nucleation agents for the PP matrix. Generally, their nucleation effectiveness increased with the addition of compatibilizers. The thermal stability enhancement of PP after adding 20A was confirmed with thermogravimetric analysis (TGA). The enhancement became more evident as a suitable compatibilizer was further added. However, for the 30B‐included composites, thermal stability enhancement was not evident. The dynamic mechanical properties (i.e., storage modulus and loss modulus) of PP increased as the nanocomposites were formed; the properties increment corresponded to the organoclay dispersion status in the matrix. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 4139–4150, 2004  相似文献   

11.
This article introduces a newly innovative idea for preparation of superconductive ternary polymeric composites of polyamide 6 (PA6), conductive carbon black (CCB), and multiwalled carbon nanotubes (MWCNTs) with different weight ratios by a melt‐mixing technique. The complementary effects of CCB and MWCNTs at different compositions on rheological, physical, morphological, thermal, and dynamic mechanical and electrical properties of the ternary composites have been examined systematically. We have used a novel formulation to produce high‐weight fraction ternary polymer composites that show extremely higher conductivity when compared with their corresponding binary polymer composites at the same carbon loading. For example, with an addition of 10 wt % MWCNTs into the CCB/PA6 composite preloaded with 10 wt % CCB, the electrical conductivity of these ternary composites was about 5 S/m, which was 10 times that of the CCB/PA6 binary composite (0.5 S/m) and 125 times that of the MWCNT/PA6 binary composite (0.04 S/m) at 20 wt % carbon loading. The incorporation of the MWCNTs effectively enhanced the thermal stability and crystallization of the PA6 matrix in the CCB/PA6 composites through heterogeneous nucleation. The MWCNTs appeared to significantly affect the mechanical and rheological properties of the PA6 in the CCB/PA6 composites, a way notably dependent on the MWCNT contents. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1203–1212, 2010  相似文献   

12.
Although there have been many reports on the preparation and applications of various polymer nanofibers with the electrospinning technique, the understanding of synthetic parameters in electrospinning remains limited. In this article, we investigate experimentally the influence of solvents on the morphology of the poly(vinyl pyrrolidone) (PVP) micro/nanofibers prepared by electrospinning PVP solution in different solvents, including ethanol, dichloromethane (MC) and N,N‐dimethylformamide (DMF). Using 4 wt % PVP solutions, the PVP fibers prepared from MC and DMF solvents had a shape like a bead‐on‐a‐string. In contrast, smooth PVP nanofibers were obtained with ethanol as a solvent although the size distribution of the fibers was somewhat broadened. In an effort to prepare PVP nanofibers with small diameters and narrow size distributions, we developed a strategy of using mixed solvents. The experimental results showed that when the ratio of DMF to ethanol was 50:50 (w/w), regular cylindrical PVP nanofibers with a diameter of 20 nm were successfully prepared. The formation of these thinnest nanofibers could be attributed to the combined effects of ethanol and DMF solvents that optimize the solution viscosity and charge density of the polymer jet. In addition, an interesting helical‐shaped fiber was obtained from 20 wt % PVP solution in a 50:50 (w/w) mixed ethanol/DMF solvent. © 2004 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 42: 3721–3726, 2004  相似文献   

13.
We have prepared a series of polylactide/exfoliated graphite (PLA/EG) nanocomposites by melt‐compounding and investigated their morphology, structures, thermal stability, mechanical, and electrical properties. For PLA/EG nanocomposites, EG was prepared by the acid treatment and following rapid thermal expansion of micron‐sized crystalline natural graphite (NG), and it was characterized to be composed of disordered graphite nanoplatelets. It was revealed that graphite nanoplatelets of PLA/EG nanocomposites were dispersed homogeneously in the PLA matrix without forming the crystalline aggregates, unlike PLA/NG composites. Thermal degradation temperatures of PLA/EG nanocomposites increased substantially with the increment of EG content up to ~3 wt %, whereas those of PLA/NG composites remained constant regardless of the NG content. For instance, thermal degradation temperature of PLA/EG nanocomposite with only 0.5 wt % EG was improved by ~10 K over PLA homopolymer. Young's moduli of PLA/EG nanocomposites increased noticeably with the increment of EG content up to ~3 wt %, compared with PLA/NG composites. The percolation threshold for electrical conduction of PLA/EG nanocomposites was found to be at 3–5 wt % EG, which is far lower graphite content than that (10–15 wt % NG) of PLA/NG composites. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 850–858, 2010  相似文献   

14.
The morphology, structure, and properties of polyethylene terephthalate (PET)/Carbon Nanotubes (CNT) conductive nanoweb were studied in this article. Nanocomposite nanofibers were obtained through electrospinning of PET solutions in trifluoroacetic acid (TFA)/dichloromethane (DCM) containing different concentrations and types of CNTs. Electrical conductivity measurements on nanofiber mats showed an electrical percolation threshold around 2 wt % multi‐wall carbon nanotubes (MWCNT). The morphological analysis results showed smoother nanofibers with less bead structures development when using a rotating drum collector especially at high concentrations of CNTs. From crystallographic measurements, a higher degree of crystallinity was observed with increasing CNT concentrations above electrical percolation. Spectroscopy results showed that both PET and CNT orientation increased with the level of alignment of the nanofibers when the nanotube concentration was below the electrical percolation threshold; while the orientation factor was reduced for aligned nanofibers with higher content in CNT. Considerable enhancement in mechanical properties, especially tensile modulus, was found in aligned nanofibers; at least six times higher than the modulus of random nanofibers at concentrations below percolation. The effect of alignment on the mechanical properties was less important at higher concentrations of CNTs, above the percolation threshold. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2052–2064, 2010  相似文献   

15.
Carbon nanofiber (CNF) composites have the potential for creating inexpensive, semiconducting polymers. These composites require a homogeneous dispersion within the polymer. Many groups have focused on high shear methods such as twin screw extrusion. Although high shear methods produce a homogeneous dispersion, the aspect ratio of the nanofibers is reduced by the mechanical force. In this report, we present results for low shear composite formation via in situ polymerization of cyclic oligomeric carbonates. The composites were characterized by thermal gravimetric analysis, electrical conductivity, scanning electron microscopy and transmission electron microscopy. The composites exhibit minimal aggregation of the carbon nanofibers even at high weight percents. The polycarbonate/CNF composites exhibit an electrical conductivity percolation threshold of 6.3 wt% which is higher compared with similar CNF composites. The composites also show an increase in thermal stability of 40 °C as the CNF loading increases from 0 to 9 wt%.  相似文献   

16.
Metallocene catalyst based polyethylene‐co‐7‐octenyldimethyl phenyl silane (PE/Si? Ph ) and its post‐treated functional forms PE/Si? X ( X = Cl , F , OCH3 , OCH2CH3 ) were used as additives in PE/ATH composites. The impact strength of the composites was significantly increased after a small addition (0.5–3.0 wt %) of the functionalized form of the copolymer (PE/Si? X ). The thermal study of the composites gave us more information about the additive's behavior at the filler/matrix interphase and correlation to the mechanical properties was found. According to this thermal data, the original untreated form of PE/Si? Ph also seemed to interact weakly with the ATH‐filler particles, which was seen in an altered interphase at the filler/matrix boundary layer. The interaction was not strong enough to improve the impact strength of composites but an increase was observed in some other mechanical properties (tensile stress, yield strain). © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5597–5608, 2005  相似文献   

17.
Copolymers from 1‐propoxyethyl methacrylate and various vinyl monomers such as n‐butyl methacrylate and styrene were synthesized, and the thermal dissociation reaction of the copolymers containing the hemiacetal ester structure was examined. The copolymers, having the ability of thermal dissociation, could control the thermal dissociation temperature because of the bulkiness and flexibility of the vinyl comonomers, the copolymer compositions, and so on. Furthermore, the possibility of control of the initiation in thermally latent addition with epoxides in the case of copolymers was also studied. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 3966–3977, 2006  相似文献   

18.
This pilot study elaborates the development of novel epoxy/electrospun polylactic acid (PLA) nanofiber composites at the fiber contents of 3, 5, and 10 wt % to evaluate their mechanical and thermal properties using flexural tests and differential scanning calorimetry (DSC). The flexural moduli of composites increase remarkably by 50.8 and 24.0% for 5 and 10 wt % fiber contents, respectively, relative to that of neat epoxy. Furthermore, a similar trend is also shown for corresponding flexural strengths being enhanced by 31.6 and 4.8%. Fractured surface morphology with scanning electron microscopy (SEM) confirms a full permeation of cured epoxy matrix into nanofiber structures and existence of nondestructive fibrous networks inside large void cavities. The glass transition temperature (Tg) of composites increases up to 54–60 °C due to embedded electrospun nanofibers compared to 50 °C for that of epoxy, indicating that fibrous networks may further restrict the intermolecular mobility of matrix in thermal effects. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2014 , 52, 618–623  相似文献   

19.
In this article, we describe the structure–property relationships between the polyoctahedral oligomeric silsesquioxane (POSS) fillers and the thermomechanical properties of the polymer composites using polystyrene, poly(methyl methacrylate), and ethylene‐(vinyl acetate) copolymer. We used eight kinds of octa‐substituted aliphatic and aromatic POSS as a filler, and homogeneous polymer composites were prepared with various concentrations of these POSS fillers. From a series of measurements of thermal and mechanical properties of the polymer composites, it was summarized that the longer alkyl chains and unsaturated bonds at the side chains in POSS are favorable to improve the thermal stability and the elasticity of polymer matrices. It was found that phenyl‐POSS can show superior ability to improve the thermomechanical properties of conventional polymers used in this study. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 5690–5697, 2009  相似文献   

20.
We demonstrate here a feasible approach to the preparation of multiwalled carbon nanotube (MWNT)/polypyrrole (PPy) core–shell nanowires by in situ inverse microemulsion. Transmission electron microscopy and scanning electron microscopy showed that the carbon nanotubes were uniformly coated with a PPy layer with a thickness of several to several tens of nanometers, depending on the MWNT content. Fourier transform infrared spectra suggested that there was strong interaction between the π‐bonded surface of the carbon nanotubes and the conjugated structure of the PPy shell layer. The thermal stability and electrical conductivity of the MWNT/PPy composites were examined with thermogravimetric analysis and a conventional four‐probe method. In comparison with pure PPy, the decomposition temperature of the MWNT/PPy (1 wt % MWNT) composites increased from 305 to 335 °C, and the electrical conductivity of the MWNT/PPy (1 wt % MWNT) composites increased by 1 order of magnitude. The current–voltage curves of the MWNT/PPy nanocomposites followed Ohm's law, reflecting the metallic character of the MWNT/PPy nanocomposites. The cyclic voltammetry measurements revealed that PPy/MWNT composites showed an enhancement in the specific charge capacity with respect to that of pure PPy. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6105–6115, 2005  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号