首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
2.
The crystal structures of Ce2[SeO3]3 and Pr2[SeO3]3 have been refined from X‐ray single‐crystal diffraction data. The compounds were obtained using stoichiometric mixtures of CeO2, SeO2, Ce, and CeCl3 (molar ratio 3:3:1:1) or Pr6O11, SeO2, Pr, and PrCl3 (molar ratio 3:27:1:2) heated in evacuated sealed silica tubes at 830 °C for one week. Ce2[SeO3]3 crystallizes orthorhombically (space group: Pnma), with four formula units per unit cell of the dimensions a = 839.23(5) pm, b = 1421.12(9) pm, and c = 704.58(4) pm. Its structure contains only a single crystallographically unique Ce3+ cation in tenfold coordination with oxygen atoms arranged as single‐face bicapped square antiprism and two different trigonal pyramidal [SeO3]2? groups. The connectivity among the [CeO10] polyhedra results in infinite sheets of face‐ and edge‐sharing units propagating normal to [001]. Pr2[SeO3]3 is monoclinic (space group: P21/n) with twelve formula units per unit cell of the dimensions a = 1683.76(9) pm, b = 705.38(4) pm, c = 2167.19(12) pm, and β = 102.063(7)°. Its structure exhibits six crystallographically distinct Pr3+ cations in nine‐ and tenfold coordination with oxygen atoms forming distorted capped square antiprisms or prisms (CN = 9), bicapped square antiprisms and tetracapped trigonal prisms (CN = 10), respectively. The [PrO9] and [PrO10] polyhedra form double layers parallel to (111) by edge‐ or face‐sharing, which are linked by nine different [SeO3]2? groups to build up a three‐dimensional framework. In both compounds, the discrete [SeO3]2? anions (d(Se4+–O2?) = 166–174 pm) show the typical Ψ1‐tetrahedral shape owing to the non‐bonding “lone‐pair” electrons at the central selenium(IV) particles. Moreover, their stereochemical “lone‐pair” activity seems to flock together in large empty channels running along [010] in the orthorhombic Ce2[SeO3]3 and along [101] in the monoclinic Pr2[SeO3]3 structure, respectively.  相似文献   

3.
A new representative of rare‐earth metal(III) fluoride oxoselenates(IV) derivatized with alkali metals could be synthesized via solid‐state reactions. Colorless single crystals of CsSc3F6[SeO3]2 were obtained through the reaction of Sc2O3, ScF3, and SeO2 (molar ratio 1:1:3) with CsBr as reactant and fluxing agent. For this purpose, corundum crucibles embedded as liners into evacuated silica ampoules were applied as containers for these reactions at 700 °C for seven days. The new quintenary compound crystallizes in the trigonal space group P3m1 with a = 565.34(4) and c = 1069.87(8) pm (c/a = 1.892) for Z = 1. The crystal structure of CsSc3F6[SeO3]2 contains two crystallographically different Sc3+ cations. Each (Sc1)3+ is surrounded by six fluoride anions as octahedron, while the octahedra about (Sc2)3+ are formed by three fluoride anions and three oxygen atoms from three terminal [SeO3]2– anions. The [(Sc1)F6]3– octahedra link via common F vertices to six fac‐[(Sc2)F3O3]6– octahedra forming 2{[Sc3F6O6]9–} layers parallel to (001). These layers are separated by oxygen‐coordinated Cs+ cations (C.N. = 12), arranging for the charge compensation, while Se4+ cations within the layers surrounded by three oxygen atoms as ψ1‐tetrahedral [SeO3]2– units complete the structure. EDX measurements confirmed the composition of the title compound and single‐crystal Raman studies showed the typical vibrational modes of isolated [SeO3]2– anions with ideal C3v symmetry.  相似文献   

4.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

5.
LuF[SeO3] and LuCl[SeO3]: Two Non‐Isotypic Halide Oxoselenates(IV) of Lutetium Despite the formal similarity of LuF[SeO3] and LuCl[SeO3] both compounds show significant structural differences due to the different positions of the halide anions (X) within the pentagonal bipyramids [LuO5X2]9−. However, both oxoselenates(IV) have these pentagonal bipyramids as basic modules in common that are connected via O2− edges to chains. LuCl[SeO3] crystallizes orthorhombically in space group Pnma (no. 62; a = 714.63(7), b = 681.76(7) and c = 864.05(9) pm; Z = 4). The structure is isotypic to that one recently presented for ErCl[SeO3]. With a single Cl anion in each an apical and an equatorial position, the chains have to be inclined with an angle of about 54° relative to each other to get connected alternately by common Cl corners and bridging [SeO3]2− pyramids. In contrast to that, LuF[SeO3] which crystallizes triclinically in space group (no. 2; a = 644.85(6), b = 684.41(7), c = 427.98(4) pm, α = 94.063(5), β = 96.484(5) and γ = 91.895(5)°; Z = 2) takes a structural motif already known from CsTmCl2[SeO3]. Owing to the apical position of both halide anions it is now possible to connect the chains directly via discrete Ψ1‐tetrahedral [SeO3]2− groups to layers. The same layers are present in LuF[SeO3] and without the formal alkali‐metal halide unit (CsCl) of the CsTmCl2[SeO3]‐type compounds, the layers can also be connected directly by common F corners to a three‐dimensional array. Torch‐sealed evacuated silica ampoules were used for the synthesis of both lutetium(III) halide oxoselenates(IV). For LuF[SeO3] these vessels have been graphitized before to prevent them from oxosilicate‐producing side‐reactions with the applied fluoride. The synthesis of LuCl[SeO3] required Lu2O3 and SeO2 in a molar ratio of 1 : 6 with a surplus of an eutectic RbCl/LiCl mixture as fluxing agent and an annealing period of five weeks at a temperature of 500 °C, whereas Lu2O3, LuF3 and SeO2 (in a molar ratio of 1 : 1 : 3) with CsBr as flux were converted to LuF[SeO3] at 750 °C within six days.  相似文献   

6.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

7.
During attempts to synthesize lanthanoid(III) fluoride oxoselenates(IV) with the simple composition MF[SeO3], not only Pr3F[SeO3]4, but also Pr5F[SiO4]2[SeO3]3 appeared as pale green crystalline by‐products in the case of praseodymium. Pr5F[SiO4]2[SeO3]3 crystallizes triclinically in space group P$\bar{1}$ (no. 2) with a = 701.14(5), b = 982.68(7), c = 1286.79(9) pm, α = 70.552(3), β = 76.904(3), γ = 69.417(3)° and Z = 2. The five crystallographically different Pr3+ cations on the general positions 2i show coordination numbers of eight and nine. [(Pr1)O8]13– and [(Pr2)O8]13– polyhedra are connected to$\bar{1}$ {[(Pr1, 2)2O12]18–} chains along the [100] direction. [(Pr3)O7F]12–, [(Pr4)O8F]14– and [(Pr4)O8F]14– polyhedra generate [F(Pr3, 4, 5)3O19]30– units about their central F anion in triangular Pr3+ coordination. These units form $\bar{1}$ {[F(Pr3, 4, 5)3O16]24–} strands, again running parallel to [100]. Their alternating connection with the $\bar{1}$ {[(Pr1, 2)2O12]18–} chains results in $\bar{1}$ {[Pr5O20F]26–} sheets parallel to the (001) plane. Like in the already known related compound Er3F[SiO4][SeO3]2, a three‐dimensional network $\bar{1}$ {[Pr5O17F]20–} is achieved without the contribution of both the tetravalent silicon and selenium components. However, two Si4+ and three Se4+ cations forming tetrahedral [SiO4]4– and ψ1‐tetrahedral [SeO3]2– units with all O2– anions guarantee the charge balance. The formation of Pr5F[SiO4]2[SeO3]3 was observed when praseodymium sesquioxide (Pr2O3: in‐situ produced from Pr and Pr6O11 in a molar ratio of 3/11:4/11),praseodymium trifluoride (PrF3) and selenium dioxide (SeO2) in 1:1:3 molar ratios were reacted with CsBr as fluxing agent for five days at 750 °C in evacuated fused silica (SiO2) ampoules.  相似文献   

8.
Alkali‐metal scandium oxoselenates(IV) ASc[SeO3]2 (A = Na – Cs) are known since a few years and a hydrothermal synthesis was used to obtain them. In our new studies we applied a flux‐supported solid‐state reaction and produced colorless single crystals as well. All representatives ASc[SeO3]2 with A = Na – Cs crystallize in the orthorhombic space group Pnma, in contrast to earlier reports for hexagonal RbSc[SeO3]2. Furthermore we have extended this field with some crystals showing a mixed occupation on the alkali‐metal site, namely (K,Na)Sc[SeO3]2, (Rb,K)Sc[SeO3]2, and (Cs,Rb)Sc[SeO3]2. Since all of them contain [ScO6]9– octahedra and [SeO3]2– ψ1‐tetrahedra the diverse connectivity of the distinct alkali‐metal centered oxygen polyhedra differentiates the compounds with the smaller alkali metals (A′ = Na and K) from those with the bigger ones (A′′ = Rb and Cs). For the mixed crystals the amount of smaller or bigger alkali metal is responsible, which design is chosen by the system. This forces the mixed crystal (Rb,K)Sc[SeO3]2 with a higher amount of potassium instead of rubidium to crystallize isotypically with KSc[SeO3]2 and NaSc[SeO3]2, whereas the pure rubidium compound RbSc[SeO3]2 adopts the CsSc[SeO3]2‐type structure. These findings are supported by single‐crystal Raman spectroscopy.  相似文献   

9.
Synthesis and Crystal Structures of (Ph3PNPPh3)2[Re2Br10] and (Ph4P)[Re2Br9] Depending on the molar ratio by reaction of [n-Bu4N]2[ReBr6] with the Lewis acid BBr3 in dichloromethane the bioctahedral complexes [n-Bu4N]2[Re2Br10] and [n-Bu4N][Re2Br9] are formed. The X-ray structure determination on (Ph3PNPPh3)2[Re2Br10] (monoclinic, space group C 2/c, a = 20.007(4), b = 15.456(5), c = 24.695(4) Å, β = 107.53(2)°, Z = 4) reveals a centrosymmetric edge-sharing complex anion with approximate D2h symmetry and mean terminal and bridging Re–Br bond lengths of 2.453 (equatorial), 2.482 (axial) and 2.591 Å, respectively, and a Re–Re distance of 3.880 Å. (Ph4P)[Re2Br9] (triclinic, space group P 1, a = 11.062(2), b = 12.430(3), c = 13.163(5) Å, α = 72.94(2), β = 68.47(2), γ = 82.09(2)°, Z = 2) contains a confacial bioctahedral anion with nearly D3h symmetry and mean terminal and bridging Re–Br distances of 2.460 and 2.536 Å, respectively, and a Re–Re distance of 2.780 Å.  相似文献   

10.
Dark red single crystals of Sm2O2I were obtained from a reaction of SmI2 (in the presence of SmOI) and Na in a sealed tantalum ampoule at 650 °C. The title compound crystallizes in the monoclinic system (C2/m, Z = 4, a = 12.639(2), b = 4.100(1), c = 9.762(3) Å, β = 117.97(2)°). The structure consists of corrugated [Sm2+Sm3+(O2?)2]+ layers of edge and vertex‐connected Sm4O tetrahedral units with I? anions separating the layers.  相似文献   

11.
Pale yellow single crystals of the composition Ln3X2[As2O5][AsO3] (Ln = Tm for X = Br and Ln = Sm for X = Cl) were obtained via solid-state reactions in the systems Ln2O3/As2O3 from sealed silica ampoules using different halides as fluxing agents. Sm3Cl2[As2O5][AsO3] and Tm3Br2[As2O5][AsO3] crystallize isotypically in the triclinic space group P1 with Z = 2 and cell parameters of a = 543.51(4) pm, b = 837.24(6) pm, c = 1113.45(8) pm, α = 90.084(2)°, β = 94.532(2)°, γ = 90.487(2)° for the samarium and a = 534.96(4) pm, b = 869.26(6) pm, c = 1081.84(8) pm, α = 90.723(2)°, β = 94.792(2)° γ = 90.119(2)° for the thulium compound. The isotypic crystal structure of both representatives exhibits three crystallographically different Ln3+ cations, each with a coordination number of eight. (Ln1)3+ and (Ln2)3+ are only coordinated by three oxygen atoms, whereas (Ln3)3+ shows additional contacts to halide anions in forming square [LnO4X4]9– antiprisms. All As3+ cations are surrounded by three oxygen atoms in the shape of isolated [AsO3]3– ψ1-tetrahedra. They occur either isolated or condensed as pyroanionic [As2O5]4– units with a bridging oxygen atom. In both anions, non-binding lone-pair electrons are present at the As3+ cations with a pronounced stereochemically active function.  相似文献   

12.
Synthesis and Crystal Structures of the Samarium Complexes [SmI2(DME)3] and [Sm2I(NPPh3)5(DME)] When treated with ultrasound, the reaction of samarium metal with N-iodine-triphenylphosphaneimine in 1,2-dimethoxyethane (DME) leads to the two samarium complexes [SmI2(DME)3] ( 1 ) and [Sm2I(NPPh3)5(DME)] ( 2 ), which are separated from each other by fractional crystallization. 1 could be isolated in two different crystallographic forms, namely as brownish black crystals ( 1 a ) and as violet-black crystals ( 1 b ), both of them are characterized by crystal structure analyses. 1 a : Space group P21/c, Z = 4, lattice dimensions at –80 °C: a = 1459.4(1), b = 1314.4(1), c = 2293.6(2) pm, β = 99.245(8)°, R = 0.0344. The structure of 1 a holds two crystallographically independent molecules [SmI2(DME)3], in which the samarium atoms have coordination number eight. The two individuals differ from each other particularly in their I–Sm–I bond angles, which are 157.94 and 178.45°. 1 b : Space group P21, Z = 2, lattice dimensions at –80 °C: a = 849.4(3), b = 1060.1(3), c = 1235.1(6) pm, b = 93.86(5)°, R = 0.0251. 1 b has a molecular structure similar to that of 1a with a bond angle I–Sm–I of 158.40°. The phosphoraneiminato complex [Sm2I(NPPh3)5(DME)] ( 2 ) forms colourless, moisture sensitive crystals which contain two molecules DME per formula unit. 2 · 2 DME: Space group P1, Z = 2, lattice dimensions at –80 °C: a = 1405.0(4), b = 1656.5(3), c = 2208.3(7) pm, α = 89.60(3)°, β = 72.96(4)°, γ = 78.70(3)°, R = 0.0408. In 2 the two samarium atoms are linked via the μ-N atoms of two phosphoraneiminato ligands to form a planar Sm2N2 four-membered ring. One of the Sm atoms is terminally coordinated by the N atoms of two (NPPh3) groups, thus achieving a distorted tetrahedral surrounding. The second Sm atom is coordinated by the N atom of one (NPPh3) group, by the terminally bonded iodine atom, and by the O atoms of the DME chelate, thus achieving a distorted octahedral surrounding.  相似文献   

13.
K2Mn[P2S6] was synthesized from the elements in sealed quartz ampoules at 1 173 K. The compound forms transparent light brown crystals, stable against air and moisture. The crystal structure (monoclinic; space group P21/n, No. 14; a = 6.1966(9), b = 12.133(2), c = 7.424(1) Å, β = 101.52(1)°, Z = 2; Pearson code mP22) consists of columns of face-sharing S6 polyhedra (distorted octahedra and trigonal antiprisms) parallel to the a axis, interconnected by inserted K+ (CN 10; d(K? S) = 3.23–3.92 Å). The S6 polyhedra of the columns are centered alternately by Mn (in octahedra with d?(Mn? S) = 2.647 Å) and P2 pairs (in trigonal antiprisms) which are inclined to the a axis by 73.1°. The bond lengths in the resulting hexathiodiphosphate(IV) anions, [P2S6]4?, with approximate 3 2/m–D3d symmetry, are d(P? P) = 2.211 Å and d(P? S) = 2.018 Å. K2Mn[P2S6] is isotypic to K2Fe[P2S6], being the second member of this structure type. The internal modes of the observed Raman and FIR/IR spectra of K2Mn[P2S6] are in accord with the factor group analysis, and the fundamentals are assigned on the basis of [P2S6]4? units, taking into account the deviation of the D3d symmetry.  相似文献   

14.
15.
The crystal structure of .[Et4N][Sm(S2CNEt2)4] was determined by X-ray diffraction technique. The crystal crystallizes in monoclinic system, space group P21/n with a= 1. 1695(3), b=2.0821(6), c=1.7420(7) nm, β=99. 79(3)°? Z=4, Dc= 1. 39 g/ cm3, μ(Mo/KTσ) = 18. 4 cm-1, F(000) = 1812. The structure was solved by Patterson and Fourier techniques and refined by least-squares method to a final conventional R of 0. 053 for 3116 (Ⅰ> 3σ- (Ⅰ)) reflections. Each asymmetric unit contains two ions [Sm (S2CNEt2)4]-1 and [Et4N] +1, having distance between central atoms N5 and Sm3+ to be 0. 6522 nm. The atom Sm is coordinated by eight sulphur atoms. The Sm-S distance lies in the range of 0. 285-0. 290 nm with an average of 0. 288 nm.  相似文献   

16.
A binuclear samarium(III) complex with benzoic acid and 1,10‐phenanthroline, [Sm(BA)3phen]2 was synthesized and characterized by elemental analysis, UV, IR and TG‐DTG techniques. The structure of the title complex was established by single crystal X‐ray diffraction. The crystal is triclinic, space group P1 with a = 10.8216(11) Å, b = 11.9129(13) Å, c = 12.425(2) Å, α = 105.007(2)°, β = 93.652(2)°, γ = 113.2630(10)°, Z = 1, Dc = 1.650 mg·m?3, F(000) = 690. The carboxylate groups are bonded to the samarium ion in three modes: bidentate chelating, bidentate bridging, and tridentate chelating‐bridging. Each Sm3+ ion is coordinated to one bidentate chelating carboxylate group, two bidentate bridging and two tridentate chelating‐bridging carboxylate groups, as well as one 1,10‐phenanthroline molecule, forming a nine‐coordinate metal ion. Based on thermal analysis, the thermal decomposition process of [Sm(BA)3phen]2 has been derived.  相似文献   

17.
A New Rare‐Earth Metal(III) Fluoride Oxoselenate(IV): YF[SeO3] Just two representatives of the rare‐earth metal(III) fluoride oxoselenates(IV) with the formula type MF[SeO3] (M = La and Lu) exist so far, whereas for the intermediate lanthanoids only M3F[SeO3]4‐type compounds (M = Gd and Dy) were accessible. Because of the similar radius of Y3+ to the radii of the heavier lanthanoid cations, a missing link within the MF[SeO3] series could be synthesized now with the example of yttrium(III) fluoride oxoselenate(IV). Contrary to LuF[SeO3] with its triclinic structure, YF[SeO3] crystallizes monoclinically in space group P21/c (no. 14, a = 657.65(7), b = 689.71(7), c = 717.28(7) pm, β = 99.036(5)° and Z = 4). A single Y3+ cation occupying the general site 4e is surrounded by six oxide and two fluoride anions forming [YO6F2]11? polyhedra (d(Y–O) = 228–243 plus 263 pm, d(Y–F) = 219–220 pm). These are linked via common O···O edges to chains running along [010] and adjacent chains get tied to each other by sharing common O3···O3 and O3···F edges which results in sheets parallel to (100). The Se4+ cations connect these sheets as ψ1‐tetrahedral [SeO3]2? anions (d(Se–O) = 168–174 pm) for charge balance via all oxygen atoms. Despite the different coordination numbers of seven and eight for the rare‐earth metal(III) cations the structures of LuF[SeO3] and YF[SeO3] appear quite similar. The chains containing pentagonal bipyramids [LuO5F2]9? are connected to layers running parallel to the (100) plane again. In fact it is only necessary to shorten the partial structure of the straight chains along [001] to achieve the angular chains in YF[SeO3]. As a result of this shortening one oxide anion at a time moves into the coordination sphere of a neighboring Y3+ cation and therefore adds up the coordination number for Y3+ to eight. For the synthesis of YF[SeO3] yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3) and selenium dioxide (SeO2) in a molar ratio of 1 : 1 : 3 with CsBr as fluxing agent were reacted within five days at 750 °C in evacuated graphitized silica ampoules.  相似文献   

18.
Abstract

The complex [Sm(H3L)(NO3)(H2O)](NO3)2 · H2O was synthesized by the (2+3) condensation of tris(2-aminoethyl)amine with 2,6-diformyl-4-chlorophenol in the presence of Sm3+. Its crystal structure has been determined. In the complex the coordination number of Sm3+ is nine. A water molecule is encapsulated in the cryptate as a guest, confirmed by electrospray mass spectrometry, thermal analysis and the X-ray crystal structure.  相似文献   

19.
[VCl3(NPPh3)(OPPh3)], a Phosphorane Iminato Complex of Vanadium(IV) The title compound has been prepared from vanadium tetrachloride and Me3SiNPPh3 in the presence of OPPh3 in CCl4 solution, forming orange-red, moisture sensitive crystals, which were characterized by an X-ray structure determination. Space group Cc, Z = 4, 2 560 observed unique reflections, R = 0.049. Lattice dimensions at 0°C: a = 1 018(1), b = 1 826(2), c = 1 859(2) pm, β = 93.65(9)° [VCl3(NPPh3)(OPPh3)] forms monomeric molecules, in which the vanadium atom is coordinated in a distorted square pyramidal fashion with the (NPPh3)? ligand in apical position. The three chlorine atoms and the oxygen atom of the OPPh3 molecule occupy the basal positions. The phosphorane iminato group V?N?PPh3 is nearly linear (bond angle VNP 161.4°), the bond lengths VN (169 pm) and PN (162 pm) correspond with double bonds.  相似文献   

20.
Synthesis and Crystal Structure of the Holmium(III) Chloride Oxotellurate(IV) HoClTeO3 Orange coloured, rod—shaped single crystals of the holmium( III) chloride oxotellurate(IV) HoClTeO3 (orthorhombic, Pnma; a = 730.25(5), b = 696.54(5), c = 905.18(7) pm; Z = 4) are obtained during attempts to synthesize holmium(III) oxochlorotellurates(IV) by reaction of holmium oxychloride (HoOCl) and tellurium dioxide (TeO2; 1:1—2molar ratio, 800 °C, 40 d) in evacuated silica tubes. The crystal structure contains sevenfold coordinated Ho 3+ cations surrounded by five oxide and two chloride anions forming a pentagonal bipyramid. Interconnection of the [Ho(O1)(O2)4Cl2] polyhedra occurs via two edges made of four equatorial oxygen atoms (O2) under formation of {[Ho(O1)(O2)4/2Cl2/1]5‐} chains running parallel [010]. These arrange as hexagonal closest packing of rods and are linked to each other by Cl anions to a three—dimensional {[Ho(O1)1/1(O2)4/2Cl2/2]4‐} network. All Te4+ cations are embedded therein and exhibit ψ1—tetrahedral coordination figures as discrete anionic [Te(O1)(O2)2]2‐ pyramids due to the stereochemical activity of the non—binding electron pairs („lone pairs”︁). They stabilize the {[HoO3Cl]4‐} network via covalent bonds to one axial (O1) and two equatorial oxygen atoms (O2) of each [HoO5Cl2] polyhedron.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号