首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 703 毫秒
1.
The crystal structures of Ce2[SeO3]3 and Pr2[SeO3]3 have been refined from X‐ray single‐crystal diffraction data. The compounds were obtained using stoichiometric mixtures of CeO2, SeO2, Ce, and CeCl3 (molar ratio 3:3:1:1) or Pr6O11, SeO2, Pr, and PrCl3 (molar ratio 3:27:1:2) heated in evacuated sealed silica tubes at 830 °C for one week. Ce2[SeO3]3 crystallizes orthorhombically (space group: Pnma), with four formula units per unit cell of the dimensions a = 839.23(5) pm, b = 1421.12(9) pm, and c = 704.58(4) pm. Its structure contains only a single crystallographically unique Ce3+ cation in tenfold coordination with oxygen atoms arranged as single‐face bicapped square antiprism and two different trigonal pyramidal [SeO3]2? groups. The connectivity among the [CeO10] polyhedra results in infinite sheets of face‐ and edge‐sharing units propagating normal to [001]. Pr2[SeO3]3 is monoclinic (space group: P21/n) with twelve formula units per unit cell of the dimensions a = 1683.76(9) pm, b = 705.38(4) pm, c = 2167.19(12) pm, and β = 102.063(7)°. Its structure exhibits six crystallographically distinct Pr3+ cations in nine‐ and tenfold coordination with oxygen atoms forming distorted capped square antiprisms or prisms (CN = 9), bicapped square antiprisms and tetracapped trigonal prisms (CN = 10), respectively. The [PrO9] and [PrO10] polyhedra form double layers parallel to (111) by edge‐ or face‐sharing, which are linked by nine different [SeO3]2? groups to build up a three‐dimensional framework. In both compounds, the discrete [SeO3]2? anions (d(Se4+–O2?) = 166–174 pm) show the typical Ψ1‐tetrahedral shape owing to the non‐bonding “lone‐pair” electrons at the central selenium(IV) particles. Moreover, their stereochemical “lone‐pair” activity seems to flock together in large empty channels running along [010] in the orthorhombic Ce2[SeO3]3 and along [101] in the monoclinic Pr2[SeO3]3 structure, respectively.  相似文献   

2.
Rb6LiPr11Cl16[SeO3]12: A Chloride‐Derivatized Rubidium Lithium Praseodymium(III) Oxoselenate(IV) Transparent green square platelets with often truncated edges and corners of Rb6LiPr11Cl16[SeO3]12 were obtained by the reaction of elemental praseodymium, praseodymium(III,IV) oxide and selenium dioxide with an eutectic LiCl–RbCl flux at 500 °C in evacuated silica ampoules. A single crystal of the moisture and air insensitive compound was characterized by X‐ray diffraction single‐crystal structure analysis. Rb6LiPr11Cl16[SeO3]12 crystallizes tetragonally in the space group I4/mcm (no. 140; a = 1590.58(6) pm, c = 2478.97(9) pm, c/a = 1.559; Z = 4). The crystal structure is characterized by two types of layers parallel to the (001) plane following the sequence 121′2′1. Cl? anions form cubes around the Rb+ cations (Rb1 and Rb2; CN = 8; d(Rb+?Cl?) = 331 – 366 pm) within the first layer. One quarter of the possible places for Rb+ cations within this CsCl‐type kind of arrangement is not occupied, however the Cl? anions of these vacancies are connected to Pr3+ cations (Pr4) above and below instead, forming square antiprisms of [(Pr4)O4Cl4]9? units (d(Pr4?O) = 247–249 pm; d(Pr4?Cl) = 284–297 pm) that work as links between layer 1 and 2. Central cations of the second layer consist of Li+ and Pr3+. While the Li+ cations are surrounded by eight O2? anions (d(Li?O5) = 251 pm) in the shape of cubes again, the Pr3+ cations are likewisely coordinated by eight O2? anions as square antiprisms (for Pr1, d(Pr1?O2) = 242 pm) and by ten O2? anions (for Pr2 and Pr3), respectively. The latter form tetracapped trigonal antiprisms (Pr2, d(Pr2?O) = 251–253 pm and 4 × 262 pm) or bicapped distorted cubes (Pr3, d(Pr3?O) = 245–259 pm and 2 × 279 pm). The non‐binding electron pairs (“lone pairs”) at the two crystallographically different Ψ1‐tetrahedral [SeO3]2? anions (d(Se4+?O2?) = 169–173 pm) are directing towards the empty cavities between the layer‐connecting [(Pr4)O4Cl4]9? units.  相似文献   

3.
Sm2As4O9: An Unusual Samarium(III) Oxoarsenate(III) According to Sm4[As2O5]2[As4O8] Pale yellow single crystals of the new samarium(III) oxoarsenate(III) with the composition Sm4As8O18 were obtained by a typical solid‐state reaction between Sm2O3 and As2O3 using CsCl and SmCl3 as fluxing agents. The compound crystallizes in the triclinic crystal system with the space group (No. 2, Z = 2; a = 681.12(5), b = 757.59(6), c = 953.97(8) pm, α = 96.623(7), β = 103.751(7), γ = 104.400(7)°). The crystal structure of samarium(III) oxoarsenate(III) with the formula type Sm4[As2O5]2[As4O8] (≡ 2 × Sm2As4O9) contains two crystallographically different Sm3+ cations, where (Sm1)3+ is coordinated by eight, but (Sm2)3+ by nine oxygen atoms. Two different discrete oxoarsenate(III) anions are present in the crystal structure, namely [As2O5]4? and [As4O8]4?. The [As2O5]4? anion is built up of two Ψ1‐tetrahedra [AsO3]3? with a common corner, whereas the [As4O8]4? anion consists of four Ψ1‐tetrahedra with ring‐shaped vertex‐connected [AsO3]3? pyramids. Thus at all four crystallographically different As3+ cations stereochemically active non‐binding electron pairs (“lone pairs”) are observed. These “lone pairs” direct towards the center of empty channels running parallel to [010] in the overall structure, where these “empty channels” being formed by the linkage of layers with the ecliptically conformed [As2O5]4? anions and the stair‐like shaped [As4O8]4? rings via common oxygen atoms (O1 – O6, O8 and O9). The oxygen‐atom type O7, however, belongs only to the cyclo‐[As4O8]4? unit as one of the two different corner‐sharing oxygen atoms.  相似文献   

4.
Pale yellow single crystals of Sm2(SeO3)(Se2O5)2 (monoclinic, P21/c, Z = 4, a = 1003.6(2), b = 1022.5(2), c = 1287.3(2) pm, β = 112.3(2)°) were obtained from the reaction of Sm2O3 and SeO2 at 350 °C in a sealed glass ampoule. In the crystal structure both Se2O52? and SeO32? groups connect the Sm3+ ions into layers. Between the layers the lone electron pairs of the anions are located.  相似文献   

5.
New Representatives of the Er6[Si11N20]O Structure Type. High‐Temperature Synthesis and Single‐Crystal Structure Refinement of Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) with Ln = Nd, Er, Yb, Dy and 0 ≤ x ≤ 3, 0 ≤ y ≤ 3 According to the general formula Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) (0 ≤ x ≤ 3, 0 ≤ y ≤ 3) four nitridosilicates, namely Er6[Si11N20]O, Yb6.081[Si11N20.234]O0.757, Dy0.33Sm6[Si11N20]N, and Nd7[Si8Al3N20]O were synthesized in a radiofrequency furnace at temperatures between 1300 and 1650 °C. The homeotypic crystal structures of all four compounds were determined by single‐crystal X‐ray diffraction. The nitridosilicates are trigonal with the following lattice constants: Er6[Si11N20]O: a = 978.8(4) pm, c = 1058.8(3) pm; Yb6.081[Si11N20.243]O0.757: a = 974.9(1) pm, c = 1055.7(2) pm; Dy0.33Sm6[Si11N20]N: a = 989.8(1) pm, c = 1078.7(1) pm; Nd7[Si8Al3N20]O: a = 1004.25(9) pm, c = 1095.03(12) pm. The crystal structures were solved and refined in the space group P31c with Z = 2. The compounds contain three‐dimensional networks built up by corner sharing SiN4 and AlN4 tetrahedra, respectively. The Ln3+ and the “isolated” O2– ions are situated in the voids of the structures. According to Ln(6+x/3)[Si(11–y)AlyN(20+x–y)]O(1–x+y) an extension of the Er6[Si11N20]O structure type has been found.  相似文献   

6.
CoSm(SeO3)2Cl, CuGd(SeO3)2Cl, MnSm(SeO3)2Cl, CuGd2(SeO3)4 and CuSm2(SeO3)4: Transition Metal containing Selenites of Samarium and Gadolinum The reaction of CoCl2, Sm2O3, and SeO2 in evacuated silica ampoules lead to blue single crystals of CoSm(SeO3)2Cl (triclinic, , Z = 4, a = 712.3(1), b = 889.5(2), c = 1216.2(2) pm, α = 72.25(1)°, β = 71.27(1)°, γ = 72.08(1)°, Rall = 0.0586). If MnCl2 is used in the reaction light pink single crystals of MnSm(SeO3)2Cl (triclinic, , Z = 2, a = 700.8(2), b = 724.1(2), c = 803.4(2) pm, α = 86.90(3)°, β = 71.57(3)°, γ = 64.33(3)°, Rall = 0.0875) are obtained. Green single crystals of CuGd2(SeO3)2Cl (triclinic, , Z = 4, a = 704.3(4), b = 909.6(4), c = 1201.0(7) pm, α = 70.84(4)°, β = 73.01(4)°, γ = 70.69(4)°, Rall = 0.0450) form analogously in the reaction of CuCl2 and Gd2O3 with SeO2. CoSm(SeO3)2Cl contains [CoO4Cl2] octahedra, which are connected via one edge and one vertex to infinite chains. The Mn2+ ions in MnSm(SeO3)2Cl are also octahedrally coordinated by four oxygen and two chlorine ligands. The linkage of the polyhedra to chains occurs exclusively via edges. Both, the cobalt and the manganese compound show the Sm3+ ions in eight and ninefold coordination of oxygen atoms and chloride ions. In CuGd(SeO3)2Cl the Cu2+ ions are coordinated by three oxygen atoms and one Cl ion in a distorted square planar manner. One further Cl and one further oxygen ligand complete the [CuO3Cl] units yielding significantly elongated octahedra. The latter are again connected to chains via two common edges. For the Gd3+ ions coordination numbers of ?8 + 1”? and nine were found. Single crystals of the deep blue selenites CuM2(SeO3)4 (M = Sm/Gd, monoclinic, P21/c, a = 1050.4(3)/1051.0(2), b = 696.6(2)/693.5(1), c = 822.5(2)/818.5(2) pm, β = 110.48(2)°/110.53(2)°, Rall = 0.0341/0.0531) can be obtained from reactions of the oxides Sm2O3 and Gd2O3, respectively, with CuO and SeO2. The crystal structure contains square planar [CuO4] groups and irregular [MO9] polyhedra.  相似文献   

7.
A new representative of rare‐earth metal(III) fluoride oxoselenates(IV) derivatized with alkali metals could be synthesized via solid‐state reactions. Colorless single crystals of CsSc3F6[SeO3]2 were obtained through the reaction of Sc2O3, ScF3, and SeO2 (molar ratio 1:1:3) with CsBr as reactant and fluxing agent. For this purpose, corundum crucibles embedded as liners into evacuated silica ampoules were applied as containers for these reactions at 700 °C for seven days. The new quintenary compound crystallizes in the trigonal space group P3m1 with a = 565.34(4) and c = 1069.87(8) pm (c/a = 1.892) for Z = 1. The crystal structure of CsSc3F6[SeO3]2 contains two crystallographically different Sc3+ cations. Each (Sc1)3+ is surrounded by six fluoride anions as octahedron, while the octahedra about (Sc2)3+ are formed by three fluoride anions and three oxygen atoms from three terminal [SeO3]2– anions. The [(Sc1)F6]3– octahedra link via common F vertices to six fac‐[(Sc2)F3O3]6– octahedra forming 2{[Sc3F6O6]9–} layers parallel to (001). These layers are separated by oxygen‐coordinated Cs+ cations (C.N. = 12), arranging for the charge compensation, while Se4+ cations within the layers surrounded by three oxygen atoms as ψ1‐tetrahedral [SeO3]2– units complete the structure. EDX measurements confirmed the composition of the title compound and single‐crystal Raman studies showed the typical vibrational modes of isolated [SeO3]2– anions with ideal C3v symmetry.  相似文献   

8.
A family of penta‐rare‐earth incorporated tetravacant Dawson selenotungstates [H2N(CH3)2]10H3[SeO4RE5(H2O)7(Se2W14O52)2] ? 40H2O [RE=Ho3+ ( 1 ), Er3+ ( 2 ), Tm3+ ( 3 ), Tb3+ ( 4 )] were synthesized. It should be noted that a penta‐RE [SeO4RE5(H2O)7]11+ central core connecting two tetra‐vacant Dawson‐type [Se2W14O52]12? subunits generates a dimeric assembly of [SeO4RE5 (H2O)7(Se2W14O52)2]13? in the structures of 1 – 4 . Meanwhile, a class of Ho3+/Tm3+ co‐doped derivatives based on 1 with a Ho3+/Tm3+ molar ratio of 0.75:0.25–0.25:0.75 were also prepared and characterized by energy‐dispersive spectroscopy (EDS) analyses. Moreover, their luminescence properties were systematically investigated, which indicate that Tm3+ ions can sensitize the emission of Ho3+ ions in the visible region and prolong the fluorescence lifetime of Ho3+ ions to some extent. Energy transfer from Tm3+ ions to Ho3+ ions was probed by time‐resolved emission spectroscopy (TRES), and the CIE 1931 diagram has been applied to evaluate all possible luminescence colors.  相似文献   

9.
10.
Er4F2[Si2O7][SiO4]: The First Rare‐Earth Fluoride Silicate with Two Different Silicate Anions By the reaction of Er2O3 with ErF3 and SiO2 at 700 °C in sealed tantalum capsules using CsCl as flux (molar ratio 5 : 2 : 3 : 20), the compound Er4F2[Si2O7][SiO4] (triclinic, P 1; a = 648.51(5), b = 660.34(5), c = 1324.43(9) pm, α = 87.449(8), β = 85.793(8), γ = 60.816(7)°; Vm = 148.69(1) cm3/mol, Z = 2) is obtained as pale pink platelets or lath‐shaped single crystals. It consists of disilicate anions [Si2O7]6– in eclipsed conformation, ortho‐silicate anions [SiO4]4– and isolated [Er4F2]10+ units comprising two edge‐shared [Er3F] triangles. Er3+ is surrounded by 7 + 1 (Er1) or 7 (Er2–Er4) anionic neighbors, respectively, of which two are F in the case of Er1 and Er4 but only one for Er2 and Er3. The other ligands recruit from oxygen atoms of the different oxosilicate groups. The crystal structure can be described as simple rowing up of the three building groups ([SiO4]4–, [Er4F2]10+, and [Si2O7]6–) along [001]. The necessity of a large excess of fluoride for a successful synthesis of Er4F2[Si2O7][SiO4] will be discussed.  相似文献   

11.
Three Alkali‐Metal Erbium Thiophosphates: From the Layered Structure of KEr[P2S7] to the Three‐Dimensional Cross‐Linkage in NaEr[P2S6] and Cs3Er5[PS4]6 The three alkali‐metal erbium thiophosphates NaEr[P2S6], KEr[P2S7], and Cs3Er5[PS4] show a small selection of the broad variety of thiophosphate units: from ortho‐thiophosphate [PS4]3? and pyro‐thiophosphate [S3P–S–PS3]4? with phosphorus in the oxidation state +V to the [S3P–PS3]3? anion with a phosphorus‐phosphorus bond (d(P–P) = 221 pm) and tetravalent phosphorus. In spite of all differences, a whole string of structural communities can be shown, in particular for coordination and three‐dimensional linkage as well as for the phosphorus‐sulfur distances (d(P–S) = 200 – 213 pm). So all three compounds exhibit eightfold coordinated Er3+ cations and comparably high‐coordinated alkali‐metal cations (CN(Na+) = 8, CN(K+) = 9+1, and CN(Cs+) ≈ 10). NaEr[P2S6] crystallizes triclinically ( ; a = 685.72(5), b = 707.86(5), c = 910.98(7) pm, α = 87.423(4), β = 87.635(4), γ = 88.157(4)°; Z = 2) in the shape of rods, as well as monoclinic KEr[P2S7] (P21/c; a = 950.48(7), b = 1223.06(9), c = 894.21(6) pm, β = 90.132(4)°; Z = 4). The crystal structure of Cs3Er5[PS4] can also be described monoclinically (C2/c; a = 1597.74(11), b = 1295.03(9), c = 2065.26(15) pm, β = 103.278(4)°; Z = 4), but it emerges as irregular bricks. All crystals show the common pale pink colour typical for transparent erbium(III) compounds.  相似文献   

12.
Preparation and Structure of (3‐Methylpyridinium)3[DyCl6] and (3‐Methylpyridinium)2[DyCl5(Ethanol)] The complex chlorides (3‐Methylpyridinium)3[DyCl6] ( 1 ) and (3‐Methylpyridinium)2[DyCl5(Ethanol)] ( 2 ) have been prepared for the first time. The crystal structures have been determined from single crystal X‐ray diffraction data. 1 crystallizes in the trigonal space group R3c (Z = 36) with a = 2953.3(3) pm, b = 2953.3(3) pm and c = 3252.5(4) pm, compound 2 crystallizes in the triclinic space group P1 (Z = 2) with a = 704.03(8) pm, b = 808.10(8) pm, c = 1937.0(2) pm, α = 77.94(1)°, β = 87.54(1)° and γ = 83.26(1)°. The structures contain isolated octahedral building units [DyCl6]3– and [DyCl5(Ethanol)]2–, respectively.  相似文献   

13.
Novel Oxonium Halogenochalcogenates Stabilized by Crown Ethers: [H3O(Dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] and [H5O2(Bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] Two novel complex oxonium bromoselenates(II,IV) and –(II) are reported containing [H3O]+ and [H5O2]+ cations coordinated by crown ether ligands. [H3O(dibromo‐benzo‐18‐crown‐6)]2[Se3Br10] ( 1 ) and [H5O2(bis‐dibromo‐dibenzo‐24‐crown‐8]2[Se3Br8] ( 2 ) were prepared as dark red crystals from dichloromethane or acetonitrile solutions of selenium tetrabromide, the corresponding unsubstituted crown ethers, and aqueous hydrogen bromide. The products were characterized by their crystal structures and by vibrational spectra. 1 is triclinic, space group (Nr. 2) with a = 8.609(2) Å, b = 13.391(3) Å, c = 13.928(3) Å, α = 64.60(2)°, β = 76.18(2)°, γ = 87.78(2)°, V = 1404.7(5) Å3, Z = 1. 2 is also triclinic, space group with a = 10.499(2) Å, b = 13.033(3) Å, c = 14.756(3) Å, α = 113.77(3)°, β = 98.17(3)°, γ = 93.55(3)°. V = 1813.2(7) Å3, Z = 1. In the reaction mixture complex redox reactions take place, resulting in (partial) reduction of selenium and bromination of the crown ether molecules. In 1 the centrosymmetric trinuclear [Se3Br10]2? consists of a central SeIVBr6 octahedron sharing trans edges with two square planar SeIIBr4 groups. The novel [Se3Br8]2? in 2 is composed of three planar trans‐edge sharing SeIIBr4 squares in a linear arrangement. The internal structure of the oxonium‐crown ether complexes is largely determined by the steric restrictions imposed by the aromatic rings in the crown ether molecules, as compared to complexes with more flexible unsubstituted crown ether ligands.  相似文献   

14.
Hydro­thermally prepared La2(SeO3)3 contains a three‐dimensional network of LaO10 polyhedra [dav(La—O) = 2.622 (3) Å] and SeO3 pyramids [dav(Se—O) = 1.691 (3) Å]. One of the SeO3 pyramids is in a general position and the other has crystallographic m symmetry. There are pseudo‐channels in the [010] direction which are probably associated with the SeIV lone pairs.  相似文献   

15.
A New Rare‐Earth Metal(III) Fluoride Oxoselenate(IV): YF[SeO3] Just two representatives of the rare‐earth metal(III) fluoride oxoselenates(IV) with the formula type MF[SeO3] (M = La and Lu) exist so far, whereas for the intermediate lanthanoids only M3F[SeO3]4‐type compounds (M = Gd and Dy) were accessible. Because of the similar radius of Y3+ to the radii of the heavier lanthanoid cations, a missing link within the MF[SeO3] series could be synthesized now with the example of yttrium(III) fluoride oxoselenate(IV). Contrary to LuF[SeO3] with its triclinic structure, YF[SeO3] crystallizes monoclinically in space group P21/c (no. 14, a = 657.65(7), b = 689.71(7), c = 717.28(7) pm, β = 99.036(5)° and Z = 4). A single Y3+ cation occupying the general site 4e is surrounded by six oxide and two fluoride anions forming [YO6F2]11? polyhedra (d(Y–O) = 228–243 plus 263 pm, d(Y–F) = 219–220 pm). These are linked via common O···O edges to chains running along [010] and adjacent chains get tied to each other by sharing common O3···O3 and O3···F edges which results in sheets parallel to (100). The Se4+ cations connect these sheets as ψ1‐tetrahedral [SeO3]2? anions (d(Se–O) = 168–174 pm) for charge balance via all oxygen atoms. Despite the different coordination numbers of seven and eight for the rare‐earth metal(III) cations the structures of LuF[SeO3] and YF[SeO3] appear quite similar. The chains containing pentagonal bipyramids [LuO5F2]9? are connected to layers running parallel to the (100) plane again. In fact it is only necessary to shorten the partial structure of the straight chains along [001] to achieve the angular chains in YF[SeO3]. As a result of this shortening one oxide anion at a time moves into the coordination sphere of a neighboring Y3+ cation and therefore adds up the coordination number for Y3+ to eight. For the synthesis of YF[SeO3] yttrium sesquioxide (Y2O3), yttrium trifluoride (YF3) and selenium dioxide (SeO2) in a molar ratio of 1 : 1 : 3 with CsBr as fluxing agent were reacted within five days at 750 °C in evacuated graphitized silica ampoules.  相似文献   

16.
Pale violet, needle‐shaped single crystals of the new neodymium(III) oxide chloride oxoselenate(IV) Nd7O5Cl3[SeO3]4 were obtained by the reaction of Nd2O3 and NdCl3 with SeO2 (molar ratio: 3:1:4) in evacuated silica ampoules within seven days at 775 °C, if an excess of CsCl worked as fluxing agent. Nd7O5Cl3[SeO3]4 crystallizes in the triclinic space group P with the lattice parameters a = 694.46(4), b = 944.53(5), c = 1567.92(9) pm, α = 87.821(3), β = 81.849(3), γ = 84.852(3)° and Z = 2. Its structure exhibits seven crystallographically different Nd3+ cations, of which (Nd1)3+ – (Nd4)3+ are coordinated by O2– anions forming distorted square prisms. The polyhedra of (Nd1)3+ and (Nd2)3+ receive additional caps by one Cl anion each, and (Nd5)3+ – (Nd7)3+ show mixed square antiprismatic environments of O2– and Cl anions too. However, the polyhedra of (Nd5)3+ and (Nd6)3+ include two, the polyhedron about (Nd7)3+ even three Cl anions. Two‐dimensional layers of edge‐ and vertex‐linked [ONd4]10+ tetrahedra are built up by (O1)2– – (O5)2– together with all Nd3+ cations. All the other oxygen atoms belong to four crystallographically different Se4+ cations erecting ψ1‐tetrahedral oxoselenate(IV) units [SeO3]2– with stereochemically active non‐bonding electron pairs (“lone pairs”) pointing into the free space between the layers. Three independent Cl anions in threefold coordination of Nd3+ cations interconnect the layers to form a three‐dimensional network, thereby achieving the charge balance.  相似文献   

17.
Pale yellow single crystals of the composition Ln3X2[As2O5][AsO3] (Ln = Tm for X = Br and Ln = Sm for X = Cl) were obtained via solid-state reactions in the systems Ln2O3/As2O3 from sealed silica ampoules using different halides as fluxing agents. Sm3Cl2[As2O5][AsO3] and Tm3Br2[As2O5][AsO3] crystallize isotypically in the triclinic space group P1 with Z = 2 and cell parameters of a = 543.51(4) pm, b = 837.24(6) pm, c = 1113.45(8) pm, α = 90.084(2)°, β = 94.532(2)°, γ = 90.487(2)° for the samarium and a = 534.96(4) pm, b = 869.26(6) pm, c = 1081.84(8) pm, α = 90.723(2)°, β = 94.792(2)° γ = 90.119(2)° for the thulium compound. The isotypic crystal structure of both representatives exhibits three crystallographically different Ln3+ cations, each with a coordination number of eight. (Ln1)3+ and (Ln2)3+ are only coordinated by three oxygen atoms, whereas (Ln3)3+ shows additional contacts to halide anions in forming square [LnO4X4]9– antiprisms. All As3+ cations are surrounded by three oxygen atoms in the shape of isolated [AsO3]3– ψ1-tetrahedra. They occur either isolated or condensed as pyroanionic [As2O5]4– units with a bridging oxygen atom. In both anions, non-binding lone-pair electrons are present at the As3+ cations with a pronounced stereochemically active function.  相似文献   

18.
The reaction of Se4[Mo2O2Cl8] with Se4[MCl6] (M = Zr, Hf) or of Se, SeCl4, MoOCl4, and MCl4 (M = Zr, Hf) at 120 °C in sealed evacuated glass ampoules gives (Se4)2[Mo2O2Cl8][MCl6] (M = Zr, Hf) in the form of dark‐green, air sensitive crystals in quantitative yield. The crystal structure analyses of both isotypic compounds (monoclinic, P21/c, Z = 2, a = 1336(2), b = 716(1), c = 1518(4) pm, β = 106.0(2)° for M = Zr; a = 1334.1(8), b = 715.03(9), c = 1518.2(3) pm, β = 106.00(2)° for M = Hf) show the presence of square‐planar Se42+, of dinuclear [Mo2O2Cl8]2—, and of almost regular octahedral [MCl6]2— ions. X‐ray crystallographic investigations on (Se4)2[Mo2O2Cl8][ZrCl6] give no hint for solid state phase transitions between —160 and 200 °C. This is in contrast to the related compounds Se4[Mo2O2Cl8] and Se4[ZrCl6] which both undergo phase transitions accompanied by reorientation of the cations and anions. (Se4)2[Mo2O2Cl8][ZrCl6] is paramagnetic and obeys the Curie‐Weiss law with a Weiss constant of —4(7) K indicating only weak interaction between the paramagnetic centres. The magnetic moment of 1.7(1) μB is consistent with the presence of MoV (d1 configuration) and supports the ionic formula.  相似文献   

19.
Quaternary Cesium Copper(I) Lanthanoid(III) Selenides of the Type CsCu3M2Se5 (M = Sm, Gd — Lu) By oxidation of mixtures of copper and lanthanoid metal with elemental selenium in molar ratios of 1 : 1 : 2 and in addition of CsCl quaternary cesium copper(I) lanthanoid(III) selenides with the formula CsCu3M2Se5 (M = Sm, Gd — Lu) were obtained at 750 °C within a week from torch‐sealed evacuated silica tubes. An excess of CsCl as flux helps to crystallize golden yellow or red, needle‐shaped, water‐resistant single crystals. The crystal structure of CsCu3M2Se5 (M = Sm, Gd — Lu) (orthorhombic, Cmcm, Z = 4; e. g. CsCu3Sm2Se5: a = 417.84(3), b = 1470.91(8), c = 1764.78(9) pm and CsCu3Lu2Se5: a = 407.63(3), b = 1464.86(8), c = 1707.21(9) pm, respectively) contains [MSe6]9— octahedra which share edges to form double chains running along [100]. Those are further connected by vertices to generate a two‐dimensional layer parallel to (010). By edge‐ and vertex‐linking of [CuSe4]7— tetrahedra two crystallographically different Cu+ cations build up two‐dimensional puckered layers parallel to (010) as well. These sheet‐like structure interconnects the equation/tex2gif-stack-3.gif{[M2Se5]4—} layers to create a three‐dimensional network according to equation/tex2gif-stack-4.gif{[Cu3M2Se5]}. Thus empty channels along [100] form, apt to take up the Cs+ cations. These are surrounded by eight plus one Se2— anions in the shape of (2+1)‐fold capped trigonal prisms with Cs—Se distances between 348 and 368 pm (8×) and 437 (for M = Sm) or 440 pm (for M = Lu), respectively, for the ninth ligand.  相似文献   

20.
Pr4(SeO3)2(SeO4)F6 and NaSm(SeO3)(SeO4): Selenite‐Selenates of Rare Earth Elements Light green single crystals of Pr4(SeO3)2(SeO4)F6 have been obtained from the decomposition of Pr2(SeO4)3 in the presence of LiF in a gold ampoule. The monoclinic compound (C2/c, Z = 4, a = 2230.5(3), b = 710.54(9), c = 835.6(1) pm, β = 98.05(2)°, Rall = 0.0341) contains two crystallographically different Pr3+ ions. Pr(1)3+ is attached by six fluoride ions and two chelating SeO32– groups (CN = 10), Pr(2)3+ is surrounded by four fluoride ions, three monodentate SeO32– and two SeO42– groups. One of the latter acts as a chelating ligand, so the CN of Pr(2)3+ is 10. The selenite ions are themselves coordinated by five and the selenate ions by four Pr3+ ions. The coordination number of the F ions is three and four, respectively. The linkage of the coordination polyhedra leads to cavities in the crystal structure which incorporate the lone pairs of the selenite ions. The reaction of Sm2(SeO4)3 and NaCl in gold ampoules yielded light yellow single crystals of NaSm(SeO3)(SeO4). The monoclinic compound (P21/c, Z = 4, a = 1066.9(2), b = 691.66(8), c = 825.88(9) pm, β = 91.00(2)°, Rall = 0.0530) contains tenfold oxygen coordinated Sm3+ ions. The oxygen atoms belong to five SeO32– and two SeO42– ions. Two of the SeO32– groups as well as one of the SeO42– groups act as a chelating ligand. The sodium ions are surrounded by five SeO42– ions and one SeO32– group. One of the selenate ions is attached chelating leading to a coordination number of seven. Each selenite group is coordinated by six (5 × Sm3+ and 1 × Na+), each selenate ion by seven cations (5 × Na+ and 2 × Sm3+).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号