首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Tetrarubidiumnonagermanid(4–)-ethylendiamin, Rb4[Ge9][en] Orange-farbene Kristalle von Rb4[Ge9][en] erhält man nach der Austauschreaktion einer Lösung von ,NaGe2.25‘ (precursor) in Ethylendiamin (en) mit festem RbI bei 360 K und nachfolgender langsamer Abkühlung. Die Verbindung ist äußerst empfindlich gegen Oxidation und Hydrolyse. Der thermische Abbau im dynamischen Vakuum beginnt mit der vollständigen Abgabe von en bei 350 K. Es folgt die Sublimation von Rubidium in vier weiteren Stufen (Rb8Ge25, Rb8Ge44, RbxGe136 mit x È 16, Ge). Das Ramanspektrum zeigt die charakteristischen Banden des Anions [Ge9]4– bei 151, 163, 185 und 222 cm–1. Rb4[Ge9][en] kristallisiert in einem neuen Strukturtyp (Raumgruppe P21/m; a = 15.353 Å, b = 16.434 Å, c = 15.539 Å, β = 113.75°; Z = 6; Pearsonsymbol mP198-40), der als hierarchische Variante der Strukturen von Al4YbMo2 und CrB4 (hierarchische Basistypen, „initiators”︁) beschrieben werden kann, indem Atome partiell durch Aggregate ersetzt werden: B4[□][Cr] ≙ Al4[Yb][Mo]2 ≙ Rb4[Ge9][en]1–2. Drei kristallographisch unabhängige [Ge9]4–-Cluster sind in ein vierbindiges 465-Netz aus Rb-Atomen eingebettet, ein Netzwerk kondensierter Tetraasterane. Die Cluster sind verzerrte überkappte tetragonale Antiprismen mit D1(Ge–Ge) = 2.57 Å (16 Ç ) und D2(Ge–Ge) = 2.84 Å (4 Ç ). Die Atome der Cluster mit D1 und D2 liegen auf der Oberfläche eines Rotationsellipsoids (a = b = 2.136 Å, c = 2.431 Å). Die en-Moleküle befinden sich in offenen Kanälen entlang [1¯ 0 1]. Die Koordinationen [Ge9]Rb12/4 und Rb [Ge9]4/12 en2/8 zeigen, daß beim ersten Schritt der Solvatisierung Kationen und Clusteranionen nicht voneinander getrennt werden.  相似文献   

2.
Four coordination polymers, [CsL1(H2O)2]·H2O (1), [CsL2(H2O)2]·H2O (2), [Rb2(L2)2(H2O)2]·2H2O (3) and [RbL3(H2O)] (4), were synthesized by Cs(I), Rb(I) and 4′-hydroxyisoflavone-3′-sulfonates L1L3 [L1 = 7-methoxy-4′-hydroxyisoflavone-3′-sulfonate, L2 = 7-ethoxy-4′-hydroxyisoflavone-3′-sulfonate, L3 = 7-ethoxy-4′,5-dihydroxyisoflavone-3′-sulfonate]. The crystal structures of 14 were determined by single-crystal X-ray diffraction. The influences of 4′-hydroxyisoflavone-3′-sulfonate ligands and Cs+, Rb+ on their structural features and self-assembly were investigated. The sulfonates of L1L3 not only coordinate with Cs+ or Rb+ directly, but also bridge the organic region and the inorganic region in 14. Non-covalent interactions such as coordination interaction, ππ stacking interaction and hydrogen bonding assembled 14 into 3-D networks together with the electrostatic interactions between Cs+, Rb+ and the sulfonate anions.  相似文献   

3.
The title compound, Cs3[Cr(C2O4)3]·2H2O, has been synthesized for the first time and the spatial arrangement of the cations and anions is compared with those of the other members of the alkali metal series. The structure is built up of alternating layers of either the d or l enantiomers of [Cr(oxalate)3]3−. Of note is that the distribution of the [Cr(oxalate)3]3− enantiomers in the Li+, K+ and Rb+ tris(oxalato)chromates differs from those of the Na+ and Cs+ tris(oxalato)chromates, and also differs within the corresponding BEDT‐TTF [bis(ethylenedithio)tetrathiafulvalene] conducting salts. The use of tris(oxalato)chromate anions in the crystal engineering of BEDT‐TTF salts is discussed, wherein the salts can be paramagnetic superconductors, semiconductors or metallic proton conductors, depending on whether the counter‐cation is NH4+, H3O+, Li+, Na+, K+, Rb+ or Cs+. These materials can also be superconducting or semiconducting, depending on the spatial distribution of the d and l enantiomers of [Cr(oxalate)3]3−.  相似文献   

4.
The new hexathiodiphosphate(IV) hydrates K4[P2S6] · 4 H2O ( 1 ), Rb4[P2S6] · 6 H2O ( 2 ), and Cs4[P2S6] · 6 H2O ( 3 ) were synthesized by soft chemistry reactions from aqueous solutions of Na4[P2S6] · 6 H2O and the corresponding heavy alkali‐metal hydroxides. Their crystal structures were determined by single crystal X‐ray diffraction. K4[P2S6] · 4 H2O ( 1 ) crystallizes in the monoclinic space group P 21/n with a = 803.7(1), b = 1129.2(1), c = 896.6(1) pm, β = 94.09(1)°, Z = 2. Rb4[P2S6] · 6 H2O ( 2 ) crystallizes in the monoclinic space group P 21/c with a = 909.4(2), b = 1276.6(2), c = 914.9(2) pm, β = 114.34(2)°, Z = 2. Cs4[P2S6] · 6 H2O ( 3 ) crystallizes in the triclinic space group with a = 742.9(2), b = 929.8(2), c = 936.8(2) pm, α = 95.65(2), β = 112.87(2), γ = 112.77(2)°, Z = 1. The structures are built up by discrete [P2S6]4? anions in staggered conformation, the corresponding alkali‐metal cations and water molecules. O ··· S and O ··· O hydrogen bonds between the [P2S6]4? anions and the water molecules consolidate the structures into a three‐dimensional network. The different water‐content compositions result by the corresponding alkali‐metal coordination polyhedra and by the prefered number of water molecules in their coordination sphere, respectively. The FT‐Raman and FT‐IR/FIR spectra of the title compounds have been recorded and interpreted, especially with respect to the [P2S6]4? group. The thermogravimetric analysis showed that K4[P2S6] · 4 H2O converted to K4[P2S6] as it was heated at 100 °C.  相似文献   

5.
The structures of the two novel title compounds, Rb2[CrCl5(H2O)], (I), and Cs2[CrCl5(H2O)], (II), have been determined by single‐crystal X‐ray diffraction. Compounds (I) and (II) crystallize with Pnma and Cmcm symmetry, respectively. In (I), the Cr, three Cl and water O atom lie on a mirror plane; in (II), the Cs, Cr, O and one of the Cl atoms are at sites with m2m symmetry. The chromate anions are in a pseudo‐cubic environment of eight Rb+ cations in (I) and in a pseudo‐octahedral environment of six Cs+ cations in (II). The structural arrangement correlates with the ranion/rcation radius ratio.  相似文献   

6.
In (1,4,7,10,13,16‐hexaoxacyclooctadecane)rubidium hexachloridoantimonate(V), [Rb(C12H24O6)][SbCl6], (1), and its isomorphous caesium {(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium hexachloridoantimonate(V), [Cs(C12H24O6)][SbCl6]}, (2), and ammonium {ammonium hexachloridoantimonate(V)–1,4,7,10,13,16‐hexaoxacyclooctadecane (1/1), (NH4)[SbCl6]·C12H24O6}, (3), analogues, the hexachloridoantimonate(V) anions and 18‐crown‐6 molecules reside across axes passing through the Sb atoms and the centroids of the 18‐crown‐6 groups, both of which coincide with centres of inversion. The Rb+ [in (1)], Cs+ [in (2)] and NH4+ [in (3)] cations are situated inside the cavity of the 18‐crown‐6 ring; they are situated on axes and are equally disordered about centres of inversion, deviating from the centroid of the 18‐crown‐6 molecule by 0.4808 (13), 0.9344 (7) and 0.515 (8) Å, respectively. Interaction of the ammonium cation and the 18‐crown‐6 group is supported by three equivalent hydrogen bonds [N...O = 2.928 (3) Å and N—H...O = 162°]. The centrosymmetric structure of [Cs(18‐crown‐6)]+, with the large Cs+ cation approaching the centre of the ligand cavity, is unprecedented and accompanied by unusually short Cs—O bonds [2.939 (2) and 3.091 (2) Å]. For all three compounds, the [M(18‐crown‐6)]+ cations and [SbCl6] anions afford linear stacks along the c axis, with the cationic complexes embedded between pairs of inversion‐related anions.  相似文献   

7.
The structure of the title complex, poly[dicaesium(I) hexaaquacobalt(II) [octaaquatetra‐μ‐citrato‐hexacobalt(II)] dodecahydrate], {Cs2[Co(H2O)6][Co6(C6H4O7)4(H2O)8]·12H2O}n, at 100 (1) K is formed by layers of a square two‐dimensional polymer composed of CoII citrate cubanes bridged by magnetically active six‐coordinate CoII cations. The polymer has plane symmetry p4mm in the c‐axis projection. The cubanes reside on sites of crystallographic symmetry , while the bridging CoII centres lie on twofold axes. The basic polymeric unit has a charge of 4−, balanced by two Cs+ and a [Co(H2O)6]2+ (symmetry ) cation, which lie in channels between the polymeric layers. Unligated water molecules, of which there are 12 per cubane, enter into an extended intralayer and layer‐bridging hydrogen‐bond pattern, which can be described in detail even though not all of the H atoms of the water molecules were located.  相似文献   

8.
The crystal structures of two crown‐ether‐coordinated caesium halogen salt hydrates, namely di‐μ‐bromido‐bis[aqua(1,4,7,10,13,16‐hexaoxacyclooctadecane)caesium(I)] dihydrate, [Cs2Br2(C12H24O6)2(H2O)2]·2H2O, (I), and poly[[diaquadi‐μ‐chlorido‐μ‐(1,4,7,10,13,16‐hexaoxacyclooctadecane)dicaesium(I)] dihydrate], {[Cs2Cl2(C12H24O6)(H2O)2]·2H2O}n, (II), are reported. In (I), all atoms are located on general positions. In (II), the Cs+ cation is located on a mirror plane perpendicular to the a axis, the chloride anion is located on a mirror plane perpendicular to the c axis and the crown‐ether ring is located around a special position with site symmetry 2/m, with two opposite O atoms exactly on the mirror plane perpendicular to the a axis; of one water molecule, only the O atom is located on a mirror plane perpendicular on the a axis, while the other water molecule is completely located on a mirror plane perpendicular to the c axis. Whereas in (I), hydrogen bonds between bromide ligands and water molecules lead to one‐dimensional chains running along the b axis, in (II) two‐dimensional sheets of water molecules and chloride ligands are formed which combine with the polymeric caesium–crown polymer to give a three‐dimensional network. Although both compounds have a similar composition, i.e. a Cs+ cation with a halogen, an 18‐crown‐6 ether and a water ligand, the crystal structures are rather different. On the other hand, it is remarkable that (I) is isomorphous with the already published iodide compound.  相似文献   

9.
Reactions of rubidium or barium salts of the ortho‐selenostannate anion, [Rb4(H2O)4][SnSe4] ( 1 ) or [Ba2(H2O)5][SnSe4] ( 2 ) with Zn(OAc)2 or ZnCl2 in aqueous solution yielded two novel compounds with different ternary Zn/Sn/Se anions, [Rb10(H2O)14.5][Zn4(μ4‐Se)2(SnSe4)4] ( 3 ) and [Ba5(H2O)32][Zn5Sn(μ3‐Se)4(SnSe4)4] ( 4 ). 1 – 4 have been determined by means of single crystal X‐ray diffraction: 1 : triclinic space group lattice dimensions at 203 K: a = 8.2582(17) Å, b = 10.634(2) Å, c = 10.922(2) Å, α = 110.16(3)°, β = 91.74(3)°, γ = 97.86(3)°, V = 888.8(3) Å3; R1 [I > 2σ(I)] = 0.0669; wR2 = 0.1619; 2 : orthorhombic space group Pnma; lattice dimensions at 203 K: a = 17.828(4) Å, b = 11.101(2) Å, c = 6.7784(14) Å, V = 1341.5(5) Å3; R1 [I > 2σ(I)] = 0.0561; wR2 = 0.1523; 3 : triclinic space group ; lattice dimension at 203 K: a = 17.431(4) Å, b = 17.459(4) Å, c = 22.730(5) Å, α = 105.82(3)°, β = 99.17(3)°, γ = 90.06(3)°, V = 6563.1(2) Å3; R1 [I > 2σ(I)] = 0.0822; wR2 = 0.1782; 4 : monoclinic space group P21/c; lattice dimensions at 203 K: a = 25.231(5) Å, b = 24.776(5) Å, c = 25.396(5) Å, β = 106.59(3)°, V = 15215.0(5) Å3; R1 [I > 2σ(I)] = 0.0767; wR2 = 0.1734. The results serve to underline the crucial role of the counterion for the type of ternary anion to be observed in the crystal. Whereas Rb+(aq) stabilizes a P1‐type Zn/Sn/Se supertetrahedron in 3 like K+, the Ba2+(aq) ions better fit to an anionic T3‐type Zn/Sn/Se cluster arrangement as do Na+ ions. It is possible to estimate a radius:charge ratio for the stabilization of the two structural motifs.  相似文献   

10.
Reactions of K4[SnSe4], Na4[GeS4] or Ba2[GeSe4] with different 1,2‐diaminoethane (= en) coordinated complexes of CrCl3 ([Cr(en)2Cl2]Cl or [Cr(en)3]Cl3) in MeOH or aqueous solution yielded three novel compounds that contain complexes of Cr3+ with ortho‐chalcogenotetrelate anions [E′E4]4? (E′ = Ge, Sn; E = S; Se): the crystal structures of [K6(MeOH)9][Sn2Se6][Cr(en)2(SnSe4)]2 ( 1 ), [Na(H2O)4][Cr(en)3]2[GeS3OH]2[Cr(en)2(GeS4)] ( 2 ), and [Ba(H2O)10][{Cr(en)}2(GeSe4)2] ( 4 ) have been determined by means of single crystal X‐ray diffraction ( 1 : triclinic space group ; lattice dimensions at 203 K: a = 1175.7(2), b = 1315.3(3), c = 1326.7(3) pm, α = 61.99(3)°, β = 64.05(3)°, γ = 83.57(3)°, V = 1617.4(6)·106 pm3; R1 [I > 2σ(I)] = 0.0788; wR2 = 0.1306; 2 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2445.3(5), b = 1442.5(3), c = 1579.3(3) pm, β = 94.61(3)°, V = 5552.9(19)·106 pm3; R1 [I > 2σ(I)] = 0.0801; wR2 = 0.2046; 4 : triclinic space group ; lattice dimension at 203 K: a = 1198.4(2), b = 1236.8(3), c = 1297.5(3) pm, α = 65.69(3)°, β = 63.35(3)°, γ = 81.21(3)°, V = 1565.2(5)·106 pm3; R1 [I > 2σ(I)] = 0.0732; wR2 = 0.1855). 1 and 2 show the yet unprecedented complexation of transition metal ions by non‐bridging, single chalcogenotetrelate ligands to produce dinuclear, heterobimetallic complexes. Compound 2 contains the first structurally characterized complex with an ortho‐thiogermanate ligand. The formation of these compounds, and of a by‐product of 2 , [Cr(en)3][GeS3OH]·6H2O ( 3 : monoclinic space group C2/c; lattice dimensions at 203 K: a = 2396.8(5), b = 1463.4(3), c = 1740.1(4) pm, β = 132.99(3)°, V = 4463.8(15)·106 pm3; R1 [I > 2σ(I)] = 0.0462; wR2 = 0.1058), provides some insight in fundamental differences between the reaction behavior of [SnE4]4? anions one the one hand and [GeE4]4? anions on the other hand. The crucial role of the counterion charge becomes evident when comparing the structure motifs of the ternary anions in 1 and 2 with that observed in the Ba2+ compound 4 .  相似文献   

11.
The hexachalcogenodistannates K6[SnIII2Se6] or Li4[SnIV2Te6]·8en were recently reported to simultaneously act as mild oxidants and chalcogenide sources in reactions with CoCl2/LiCp* (Cp* = pentamethylcyclopentadienide) while the Sn—E (E = Se, Te) fragment is not kept in the products, e.g. [(Cp*Co)3(μ3‐Se)2], [(Cp*Co)3(μ3‐Se)2][Cl2Co(μ2‐Cl)2Li(thf)2] or [(Cp*Co)4(μ3‐Te)4]. In search of related reagents with possibly different reaction behavior, we isolated and crystallographically characterized isotypic compounds [enH]4[SnIV2Se6]�en ( 1 ), and [enH]4[SnIV2Te6en ( 2 ) (en = 1, 2‐diaminoethane), that result from an uncommon disproportion/re‐arrangement reaction: distannate(III) K6[Sn2E6] (E = Se, Te) was reacted with en·2HCl to yield 1 or 2 under disproportion of SnIII to SnII and SnIV. Another pathway was necessary to synthesize the respective but solvent‐free thiostannate [enH]4 [SnIV2S6] ( 3 ), since the phase “K6[Sn2S6]” is unknown. This second method started out from SnCl4·2THF and S(SiMe3)2 in en solution. However, using E(SiMe3)2 (E = Se, Te) instead of S(SiMe3)2, 1 and 2 are also obtained this way. 1—3 are the first chalcogenostannates that exhibit exclusively [enH]+ counterions. The compounds were characterized by means of X‐ray crystallography and NMR spectroscopy. They seem to be suitable for reactions towards group 8‐10 metal complexes. Preliminary experiments indicate that the binary anions 1 — 3 coordinated by 1‐aminoethylammonium ions react more slowly compared to the anionic phases tested until now.  相似文献   

12.
Three new metal–nitroxide complexes {[Ni(NIT4Py)2(obb)(H2O)2] · 1.5H2O}n ( 1 ), {[Co(NIT4Py)2(obb)(H2O)2] · 2H2O}n ( 2 ), and [Co(IM4Py)2(obb)2(H2O)2][Co(IM4Py)2(H2O)4] · 10H2O ( 3 ) with the V‐shaped 4,4′‐oxybis(benzoate) [NIT4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxyl‐3‐oxide, IM4Py = 2‐(4′‐pyridyl)‐4,4,5,5‐tetramethylimidazoline‐1‐oxide, and obb = 4, 4′‐oxybis(benzoate) anion] were synthesized and structurally characterized. Single‐crystal X‐ray analyses indicate that complexes 1 and 2 crystallize in neutral one‐dimensional (1D) zigzag chains, in which the nitroxide–metal–nitroxide units are linked by the V‐shaped 4,4′‐oxybis(benzoate) anions, whereas complex 3 consists of isolated mononuclear [Co(IM4Py)2(obb)2(H2O)2]2– anions and [Co(IM4Py)2(H2O)4]2+ ions. Magnetic measurements show that complexes 1 and 2 both exhibit weak antiferromagnetic interactions between the metal ions and the nitroxides.  相似文献   

13.
The title complexes, hexaaquacobalt(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Co(H2O)6][Bi2(C7H4NO4)4]·2H2O, (I), and hexaaquanickel(II) bis(μ‐pyridine‐2,6‐dicarboxylato)bis[(pyridine‐2,6‐dicarboxylato)bismuthate(III)] dihydrate, [Ni(H2O)6][Bi2(C7H4NO4)4]·2H2O, (II), are isomorphous and crystallize in the triclinic space group P. The transition metal ions are located on the inversion centre and adopt slightly distorted MO6 (M = Co or Ni) octahedral geometries. Two [Bi(pydc)2] units (pydc is pyridine‐2,6‐dicarboxylate) are linked via bridging carboxylate groups into centrosymmetric [Bi2(pydc)4]2− dianions. The crystal packing reveals that the [M(H2O)6]2+ cations, [Bi2(pydc)4]2− anions and solvent water molecules form multiple hydrogen bonds to generate a supramolecular three‐dimensional network. The formation of secondary Bi...O bonds between adjacent [Bi2(pydc)4]2− dimers provides an additional supramolecular synthon that directs and facilitates the crystal packing of both (I) and (II).  相似文献   

14.
The first triorganotin(IV) pentacyanopropenides, [R3Sn(H2O)2][C3(CN)5] (R = Me ( 2 ), nBu ( 3 ), Ph ( 4 ) were prepared by treatment of Ag[C3(CN)5] ( 1 ) with equimolar amounts of R3SnCl in reagent grade THF. In a similar manner, dark red [R3Sn(H2O)2][N{C(CN)C(CN)2}2] ( 6 ) containing the hexacyanoazapentadienyl anion was prepared in 55 % yield. The molecular structure of [Ph3Sn(H2O)2][C3(CN)5] ( 4 ) was determined by X‐ray diffraction. The crystal structure consists of separated trigonal‐bipyramidal [Ph3Sn(H2O)2]+ cations and nearly planar [C3(CN)5] anions which are linked through O–H ··· N hydrogen bonds to give a three‐dimensional network.  相似文献   

15.
The title compound, tricaesium sodium iron(III) μ3‐oxido‐hexa‐μ2‐sulfato‐tris[aquairon(III)] pentahydrate, Cs2.91Na1.34Fe3+0.25[Fe3O(SO4)6(H2O)3]·5H2O, belongs to the family of Maus's salts, K5[Fe3O(SO4)6(H2O)3]·6H2O, which is based on the triaqua‐μ3‐oxido‐hexa‐μ‐sulfato‐triferrate(III) anion, [Fe3O(SO4)6(H2O)3]5−, with Fe in a characteristically distorted octahedral coordination environment, sharing a common corner via an oxide O atom. Cs in four different cation sites, Na in three different cation sites and five water molecules link the anions in three dimensions and set up a crystal structure in which those parts parallel to (001) and within 0.05 < z < 0.95 have a distinct trigonal pseudosymmetry, whereas the cation arrangement and bonding near z∼ 0 generate a clear‐cut noncentrosymmetric polar edifice with the monoclinic space group C2. The structure shows some cation disorder in the region near z ∼ , where one Na atom in octahedral coordination is partly substituted by Fe3+, and a Cs atom is substituted by small amounts of Na on a separate nearby site. One Na atom, located on a twofold axis at z = 0 and tetrahedrally coordinated by four sulfate O atoms of two [Fe3O(SO4)6(H2O)3]5− units, plays a key role in generating the noncentrosymmetric structure. Three of the seven different cation sites are on twofold axes (one Na+ site and two Cs+ sites), and all other atoms of the structure are in general positions.  相似文献   

16.
Structures of Ionic Di(arenesulfonyl)amides. 4. Cross‐Linking Lamellar Layers by O–H…O Hydrogen Bonds: Structures of MN(SO2C6H4‐4‐COOH)2 (M = K, Rb, Cs) Syntheses and low‐temperature X‐ray crystal structures are reported for MIN(SO2C6H4‐4‐COOH)2, where M = K (monoclinic, space group P21/c, Z = 4, Z′ = 1), M = Rb (monoclinic, P21, Z = 4, Z′ = 2), or M = Cs (monoclinic, P21/c, Z = 4, Z′ = 1). The three compounds are examples of layered inorgano‐organic solids where the inorganic component is comprised of metal cations and N(SO2)2 groups and the outer regions are formed by the 4‐carboxy substituted phenyl rings of the folded anions. In the two‐dimensional coordination networks, K and Cs adopt irregular and chemically distinct [MN1O7] octacoordinations, whereas the independent Rb cations attain irregular nonacoordinations of type [RbN2O7] or [RbO9] respectively. The crystal packings of the compounds are governed by self‐assembly of parallel layers through exhaustive hydrogen bonding between carboxylic acid groups, resulting in a dense array of cyclic (COOH)2 motifs within the interlamellar regions.  相似文献   

17.
Single crystals of three rubidium uranyl selenates, Rb2[(UO2)(SeO4)2(H2O)](H2O) ( 1 ), Rb2[(UO2)2(SeO4)3(H2O)2](H2O)4 ( 2 ), and Rb4[(UO2)3(SeO4)5(H2O)] ( 3 ), have been prepared by evaporation from aqueous solutions made out of mixtures of uranyl nitrate, selenic acid and Rb2CO3. The structures of all compounds have been solved by direct methods on the basis of X‐ray diffraction data sets. The crystallographic data are as follows: ( 1 ): orthorhombic, Pna21, a = 13.677(2), b = 11.8707(13), c = 7.6397(9) Å, V = 1240.4(3) Å3, R1 = 0.045 for 2396 independent observed reflections; ( 2 ): triclinic, P1¯, a = 8.4261(12), b = 11.8636(15), c = 13.3279(18) Å, α = 102.612(10), β = 107.250(10), γ = 102.510(10)°, V = 1183.7(3) Å3, R1 = 0.067 for 4762 independent observed reflections; ( 3 ): orthorhombic, Pbnm, a = 11.3761(14), b = 15.069(2), c = 19.2089(17) Å, V = 3292.9(7) Å3, R1 = 0.075 for 3808 independent observed reflections. The structures of the phases 1 , 2 , and 3 are based upon uranyl selenate hydrate sheets composed from corner‐sharing pentagonal [UO7]8— bipyramids and [SeO4]2— tetrahedra. In the crystal structure of 1 , the sheets have composition [(UO2)(SeO4)2(H2O)]2— and run parallel to (001). The interlayer contains Rb+ cations and additional H2O molecules. In structure of 2 , the [(UO2)2(SeO4)3(H2O)2]2— sheets are oriented parallel to (101). Highly disordered Rb+ cations and H2O molecules are located between the sheets. The structure of 3 is based upon [(UO2)3(SeO4)5(H2O)]4— sheets stacked parallel to (010) and contains Rb+ cations in the interlayers. The topologies of the uranyl oxoselenate sheets observed in the structures of 1 , 2 , and 3 are related to the same simple and highly‐symmetric graph consisting of 3‐connected white and 6‐connected black vertices.  相似文献   

18.
Cs2[MnSnTe4]: Uncommon Synthesis of a Quaternary Phase Based on One‐dimensional, Ternary Anionic Chains Reaction of a methanol solvate of yet not reported ortho‐tellurostannate(IV) salt Cs4[SnTe4] ( 1 ) with MnCl2·4H2O in aqueous solution led to the formation of the novel compound Cs2[MnSnTe4] ( 2 ), the crystal structures of which was determined by means of single crystal X‐ray diffraction. 2 crystallizes in the space group Fddd. Lattice dimensions at 203 K: a = 681.9(1), b = 1506.3(3), c = 2596.7(5) pm, V = 2667.2(9)·106pm3; R1 = 0.0655. By synthesis of 2 , transfer of complete ortho‐tellurostannate anions into the coordination sphere of a 3d‐transition metal atom succeeded for the first time. The structure of 2 is based on a ternary anionic substructure formed by one‐dimensional, parallel 1{[MnSnTe4]2—} strands. In spite of the preparation in solution, 2 does not provide any solvent molecules in the crystal lattice.  相似文献   

19.
The facilitated transfer of alkali metal ions (Na+, K+, Rb+, and Cs+) by 25,26,27,28‐tetraethoxycarbonylmethoxy‐thiacalix[4]arene across the water/1,2‐dichloroethane interface was investigated by cyclic voltammetry. The dependence of the half‐wave transfer potential on the metal and ligand concentrations was used to formulate the stoichiometric ratio and to evaluate the association constants of the complexes formed between ionophore and metal ions. While the facilitated transfer of Li+ ion was not observed across the water/1,2‐dichloroethane interface, the facilitated transfers were observed by formation of 1 : 1 (metal:ionophore) complex for Na+, K+, and Rb+ ions except for Cs+ ion. In the case of Cs+ a 1 : 2 (metal:ionophore) complex was obtained from its special electrochemical response to the variation of ligand concentrations in the organic phase. The logarithms of the complex association constants, for facilitated transfer of Na+, K+, Rb+, and Cs+, were estimated as 6.52, 7.75, 7.91 (log β1°), and 8.36 (log β2°), respectively.  相似文献   

20.
[Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O, a Mixed Halide-Hydrate with the Anionic Dimer {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2? [Rb2(H2O)2][Re3(μ-Cl)3Br7(H2O)2]2 · H2O crystallizes as dark redbrown single crystals from an hydrobromic-acid solution of ReCl3 and RbBr at 0°C. An important feature of the crystal structure (monoclinic, C2/c; a = 1494.61(8); b = 835.71(4); c = 3079.96(19) pm; β = 97.801(4)°; Vm = 573.9(4) cm3mol?1; R = 0.060; Rw = 0.038) is the connection of two anions [Re3(μ-Cl)3Br7(H2O)2]? via a water molecule to dimers, {[Re3(μ-Cl)3Br7(H2O)2]2 · H2O}2?. These dimeric units are contained in slabs that are stacked in the [001] direction and held together by Rb+ cations and crystal water.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号