首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The quasi‐living copolymerization of ethylene with propylene was achieved by using N‐heterocyclic carbene (NHC) ligated vanadium complex ( V3 , VOCl3[1,3‐(2,6‐iPr2C6H3)2(NCH?)2C:]) due to the stabilization of active center by the introduction of bulky and electron rich NHC ligand with bulky isopropyl substituents at the ortho positions of the phenyl rings. The weight‐average molecular weight (Mw) of the resulting copolymer increases linearly with its weight in 20 min. The ultra‐high‐molecular‐weight (UHMW) ethylene‐propylene copolymer (Mw = 1612 kg mol?1) can be synthesized with V3 /Et3Al2Cl3 catalytic system. The novel complex V4′ (VCl3[1,3‐(2,4,6‐Me3C6H2)2(NCH?)2C:]·2THF) was constructed by the introduction of two coordinated tetrahydrofuran molecules and decrease in steric hindrance at the ortho positions of phenyl rings. The UHMW ethylene‐propylene copolymer (Mw = 1167 kg mol?1) can also be synthesized by using V4′ /Et3Al2Cl3 catalytic system. © 2018 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 553–561  相似文献   

2.
Detailed studies were made of the course of the terpolymerization of ethylene, propylene, and dicyclopentadiene to form unsaturated elastomers. All the dicyclopentadiene was added at the start of a polymerization, but the monoolefins were added continuously throughout the run. Under these conditions, unsaturation of the initial polymer is fairly high but decreases steadily as the reaction progresses. From analyses of the initial samples from each run, the catalyst of VCl4 (with Al2Et3Cl3 cocatalyst), with heptane as the polymerization solvent, was most efficient for introducing unsaturation into terpolymer. This system also produces gel in the terpolymer in the latter stages of reaction, however. Catalysts of VCl4, VOCl3, or V(C5H7O2)3, with Al2Et3Cl3 cocatalyst, in benzene solvent gave terpolymers of quite similar unsaturations. With all systems, terpolymer yield increases very rapidly in the first few minutes of reaction, then very slowly for the remainder of the 30-min. reaction time, reflecting the rapid loss of activity of the vanadium catalysts. Molecular weight growth of the terpolymer prepared in heptane was extremely rapid, reaching a high value in a few minutes. When prepared in benzene, the terpolymers showed a steady increase in molecular weight throughout the reaction but reached only a moderate final value (as expressed by inherent viscosity).  相似文献   

3.
Summary: The bis(imino)pyridyl vanadium(III ) complex [VCl3{2,6‐bis[(2,6‐iPr2C6H3)NC(Me)]2(C5H3N)}] activated with different aluminium cocatalysts (AlEt2Cl, Al2Et3Cl3, MAO) promotes chemoselective 1,4‐polymerization of butadiene with activity values higher than classical vanadium‐chloride‐based catalysts. The polymer structure depends on the nature of the cocatalyst employed. The MAO‐activated complex was also found to be active in ethylene‐butadiene copolymerization, producing copolymers with up to 45 mol‐% of trans‐1,4‐butadiene. Crystalline polyethylene and trans‐1,4‐poly(butadiene) segments were detected in these copolymers by DSC and 13C NMR spectroscopy.

  相似文献   


4.
Polymerization of ethylene and propylene with VCl4-BuLi (Bu = n-Bu, sec-Bu, tert-Bu) catalysts was investigated. The VCl4-BuLi catalysts were found to initiate the polymerization of ethylene and propylene. The VCl4-BuLi catalysts gave an ultra high molecular polyethylene. The effect of the Li /V mole ratio on the polymerization of ethylene with the VCl4-BuLi catalysts was observed, an the catalyst gave an optimum rate at the Li/V ratio of about 3.0. The polyethylene obtained with the VCl4-BuLi catalyst was found to be a linear structure. In the polymerization of propylene with the VCl4-BuLi catalyst, the polymers contain mm contents of 56–66% were produced.  相似文献   

5.
Structural Characterization of Bis(metallated) Derivatives of 3, 3‐Dimethyl‐1, 5‐bis(trimethylsilyl)‐1, 5‐diaza‐pentane with Lithium and Aluminum and of two Donor‐substituted Digallanes The diaminopropane derivative Me2C[CH2N(H)SiMe3]2 is metallated with n‐butyllithium and lithium tetrahydridoaluminate to obtain Me2C[CH2N(Li)SiMe3]2 and Me2C[CH2N(Li)SiMe3][CH2N(AlH2)SiMe3], respectively. Both compounds exhibit a central eight‐membered ring, Li4N4 or Li2Al2N4. Me2C[CH2N(Li)SiMe3]2 reacts with Ga2Cl4 · 2dioxane under formation of the corresponding tetra(amino)digallane. This is monomeric, in contrast to a dimeric tetraalkoxy‐substituted digallane, Ga4OtBu8. All compounds were characterized by single crystal X‐ray crystallography.  相似文献   

6.
Vanadium trisacetylacetonate [V(C5H7O2)3] and vanadyl bisacetylacetonate [VO-(C5H7O2)2] were found to be satisfactory catalysts (with Al2Et3Cl3 cocatalyst) for the terpolymerization of ethylene, propylene, and dicyclopentadiene to unsaturated, sulfurcurable elastomers. Polymerization solvents of heptane or benzene were used. Best yields of terpolymers were obtained in benzene. Terpolymers with unsaturations of greater than ?0.20 mole C?C/kg. can be cured with a sulfur-based vulcanzing recipe. Both acetylacetonates produced terpolymers, in benzene, with practically equivalent properties. They also appeared to be nearly equal to corresponding terpolymers made with catalysts of VOCl3 or VCl4.  相似文献   

7.
The reaction between Cp2VCl2 (Cp = η-cyclopentadienyl) in CH2Cl2 and Et3Al2Cl3 or Et2AlCl in η-heptane yields three paramagentic species giving the ESR parameters aγ = 4.11 mT, g = 1.991 (I); aγ = 7.46 mT, g = 1.982 (II); aγ = 7.398 mT, g = 1.985 (III). Ethylene was polymerized using these catalysts; the solution was examined by the electron spin resonance technique before the polymerization and during the course of the reaction. The catalyst activity decayed quickly, and the mechanism of the reaction is discussed.  相似文献   

8.
A series of Me4Cp–amido complexes {[η51‐(Me4C5)SiMe2NR]TiCl2; R = t‐Bu, 1 ; C6H5, 2 ; C6F5, 3 ; SO2Ph, 4 ; or SO2Me, 5 } were prepared and investigated for olefin polymerization in the presence of methylaluminoxane (MAO). X‐ray crystallography of complexes 3 and 4 revealed very long Ti N bonds relative to the bonds of 1 . These complexes were employed for ethylene–styrene copolymerizations, styrene homopolymerizations, and propylene homopolymerizations in the presence of MAO. The productivities of the catalysts derived from 3 – 5 were much lower than the productivity of the catalyst derived from 1 for the propylene polymerizations and ethylene–styrene copolymerizations, whereas the styrene polymerization activities were much higher for the catalysts derived from 3 – 5 than for the catalyst derived from 1 . The polymerization behavior of the catalysts derived from the metallocenes 3 – 5 were more reminiscent of monocyclopentadienyl titanocene Cp′TiX3/MAO catalysts than of CpATiX2/MAO catalysts such as 1 containing alkylamido ligands. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 4649–4660, 2000  相似文献   

9.
A series of novel (arylimido)vanadium(V) complexes bearing tridentate salicylaldiminato chelating ligands, V(N‐2,6‐Me2C6H3)Cl2[(O‐2‐tBu‐4‐R‐C6H3)CH?ND] (R = H, D = 2‐CH3O? C6H4 ( 2a ); 2‐CH3S? C6H4 ( 2b ); 2‐Ph2P? C6H4 ( 2c ); 8‐C9H6N (quinoline) ( 2d ); CH2C5H4N ( 2e ); R = tBu, D = 2‐Ph2P? C6H4 ( 2f )), were prepared from V(NAr)Cl3 by reacting with 1.0 equiv of the ligands in the presence of triethylamine in tetrahydrofuran. These complexes were characterized by 1H, 13C, 31P, and 51V NMR spectra and elemental analysis. The structures of 2c and 2f were further confirmed by X‐ray crystallographic analysis. These (arylimido)vanadium(V) complexes are effective catalyst precursors for ethylene polymerization in the presence of Et2AlCl as a cocatalyst and ethyl trichloroacetate as a reactivating agent. Complex 2c with a ? PPh2 group in the sidearm was found to exhibit an exceptional activity up to 133800 kg polyethylene/molV h for ethylene polymerization at 75 °C, which is one of the highest activities displayed by homogeneous vanadium(V) catalysts at high temperature. Moreover, high molecular weight polymers with unimodal molecular weight distribution can be obtained, indicating the single site behavior of these catalysts. © 2014 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2014 , 52, 2633‐2642  相似文献   

10.
Terpolymerizations of ethylene, propylene, and dicyclopentadiene were carried out in which the dicyclopentadiene was added to the reaction system in two equal portions at the beginning and midpoint of each run, while the monoolefins were added continuously. In the resultant elastomers, unsaturation remains much more constant throughout the course of the polymerization than for terpolymers obtained when all dicyclopentadiene is added at the start of the reaction. Yield and molecular weight of the terpolymers produced by either technique are quite comparable, however. With VCl4 catalyst (with Al2Et3Cl3 cocatalyst) in heptane solvent, the two-step addition of the diene gave terpolymers with little gel, in contrast to the high gel in terpolymers formed with the single initial addition of the diene. This system also produced terpolymer with the highest final unsaturation and molecular weight. Catalysts of VCl4, VOCl3, or V(C5H7O2)3 in benzene gave terpolymers of moderate unsaturations and molecular weights.  相似文献   

11.
The polymerization of isobutyl vinyl ether by vanadium trichloride in n-heptane was studied. VCl3 ? LiCl was prepared by the reduction of VCl4 with stoichiometric amounts of BuLi. This type of catalyst induces stereospecific polymerization of isobutyl vinyl ether without the action of trialkyl aluminum to an isotactic polymer when a rise in temperature during the polymerization was depressed by cooling. It is suggested that the cause of the stereospecific polymerization might be due to the catalyst structure in which LiCl coexists with VCl3, namely, VCl3 ? LiCl or VCl2 ? 2LiCl as a solid solution in the crystalline lattice, since VCl3 prepared by thermal decomposition of VCl4 and a commercial VCl3 did not produce the crystalline polymer and soluble catalysts such as VCl4 in heptane and VCl3 ? LiCl in ether solution did not yield the stereospecific polymer. It was found that some additives, such as tetrahydrofuran or ethylene glycol diphenyl ether, to the catalyst increased the stereospecific polymerization activity of the catalysts. Influence of the polymerization conditions such as temperature, time, monomer and catalyst concentrations, and the kind of solvent on the formed polymer was also examined.  相似文献   

12.
Lithium bis(trimethylsilyl)amide, LiN(SiMe3)2, reacts with Cp*V(O)Cl2 and Cp*TaCl4 to give trimethylsilylimido complexes such as [Cp*V(NSiMe3)(μ‐NSiMe3)]2 ( 7 ) and Cp*Ta(Cl)(NSiMe3)[N(SiMe3)2] ( 19 ), respectively. Substitution of the chloro ligand in 19 by anionic groups leads to complexes with 3 different N‐containing ligands, Cp*Ta(X)(NSiMe3)[N(SiMe3)2] (X = N3 ( 20 ) or NPEt3 ( 21 )). Complex 7 is air‐ and moisture‐sensitive, and several derivatives containing oxo and trimethylsiloxy ligands have been identified. Trimethylsilyl azide, Me3Si‐N3, is able to replace the oxygen‐containing ligands for azido ligands. The two complete series of bis(azido)‐bridged complexes, [Cp*VCln(N3)2‐n(μ‐N3)]2 (n = 2, 1, 0) and [Cp*TaCln(N3)3‐n(μ‐N3)]2(n = 3, 2, 1, 0), are accessible from the reactions of Cp*VCl3 and Cp*TaCl4, respectively, with trimethylsilyl azide. A bis(nitrido)‐bridged azido‐vanadium complex, [Cp*V(N3)(μ‐N)]2 ( 18 ), has also been obtained and structurally characterized.  相似文献   

13.
We investigated the catalytic performance of both bridged unsubstituted [rac‐EtInd2ZrMe2, rac‐Me2SiInd2ZrMe2] and 2‐substituted [rac‐Et(2‐MeInd)2ZrMe2), rac‐Me2Si(2‐MeInd)2ZrMe2] dimethylbisindenylzirconocenes activated with triisobutyl aluminum (TIBA) as a single activator in (a) homopolymerizations of ethylene and propylene, (b) copolymerization of ethylene with propylene and hexene‐1, and (c) copolymerization of propylene with hexene‐1 (at AlTIBA/Zr = 100‐300 mol/mol). Unsubstituted catalysts were inactive in homopolymerizations of ethylene and propylene and copolymerization of propylene with hexene‐1 but exhibited high activity in copolymerizations of ethylene with propylene and hexene‐1. 2‐Substituted zirconocenes activated with TIBA were active in homopolymerizations of ethylene and propylene and exhibited high activity in copolymerization of ethylene with propylene and hexene‐1, and in copolymerization of propylene with hexene‐1. Comparative microstructural analysis of ethylene‐propylene copolymers prepared over rac‐Me2SiInd2ZrMe2 activated with TIBA or Me2NHPhB(C6F5)4 has shown that the copolymers formed upon activation with TIBA are statistical in nature with some tendency to alternation, whereas those with borate activated system show a tendency to formation of comonomer blocks. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2934–2941, 2010  相似文献   

14.
A series of novel α‐diamine nickel complexes, (ArNH‐C(Me)‐(Me)C‐NHAr)NiBr2, 1 : Ar=2,6‐diisopropylphenyl, 2 : Ar=2,6‐dimethylphenyl, 3 : Ar=phenyl), have been synthesized and characterized. X‐ray crystallographic analysis showed that the coordination geometry of the α‐diamine nickel complexes is markedly different from conventional α‐diimine nickel complexes, and that the chelate ring (N‐C‐C‐N‐Ni) of the α‐diamine nickel complex is significantly distorted. The α‐diamine nickel catalysts also display different steric effects on ethylene polymerization in comparison to the α‐diimine nickel catalyst. Increasing the steric hindrance of the α‐diamine ligand by substitution of the o‐methyl groups with o‐isopropyl groups leads to decreased polymerization activity and molecular weight; however, catalyst thermal stability is significantly enhanced. Living polymerizations of ethylene can be successfully achieved using 1 /Et2AlCl at 35 °C or 2 /Et2AlCl at 0 °C. The bulky α‐diamine nickel catalyst 1 with isopropyl substituents can additionally be used to control the branching topology of the obtained polyethylene at the same level of branching density by tuning the reaction temperature and ethylene pressure.  相似文献   

15.
A series of novel vanadium(III) complexes bearing heteroatom‐containing group‐substituted salicylaldiminato ligands [RN?CH(ArO)]VCl2(THF)2 (Ar = C6H4, R = C3H2NS, 2a ; C7H4NS, 2c ; C7H5N2, 2d ; Ar = C6H2tBu2 (2,4), R = C3H2NS, 2b ) have been synthesized and characterized. Structure of complex 2c was further confirmed by X‐ray crystallographic analysis. The complexes were investigated as the catalysts for ethylene polymerization in the presence of Et2AlCl. Complexes 2a–d exhibited high catalytic activities (up to 22.8 kg polyethylene/mmolV h bar), and affording polymer with unimodal molecular weight distributions at 25–70 °C in the first 5‐min polymerization, whereas produced bimodal molecular weight distribution polymers at 70 °C when polymerization time prolonged to 30 min. The catalyst structure plays an important role in controlling the molecular weight and molecular weight distribution of the resultant polymers produced in 30 min polymerization. In addition, ethylene/hexene copolymerizations with catalysts 2a–d were also explored in the presence of Et2AlCl, which leads to the high molecular weight and unimodal distributions copolymers with high comonomer incorporation. Catalytic activity, comonomer incorporation, and polymer molecular weight can be controlled over a wide range by the variation of catalyst structure and the reaction parameters, such as comonomer feed concentration, polymerization time, and polymerization reaction temperature. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 3573–3582, 2009  相似文献   

16.
The polymerization of isobutyl vinyl ether by the VCln–AIR3 system was carefully studied. The vanadium components were prepared by the reaction between VCl4 and AlEt3 or n-BuLi as a reducing agent. VCl3·LiCl and VCl2·2LiCl are the effective catalysts for the stereospecific polymerization of isobutyl vinyl ether. When VCl3·LiCl is combined with AlR3, a new catalytic system is formed. The effect of the preparative conditions of the various vanadium component in the AlR3–VCln system shows that the effective vanadium component is trivalent. In the polymerization by VCl3·LiCl–Al (i-Bu)3 system, a change of the polymerization mechanism may occur at Al(i-Bu)3/VCl3·LiCl ratio at around 5. When the ratio is lower than 5, a cationic polymerization by VCl3·LiCl takes place predominantly, while at ratios higher than 5, it is suggested that the polymerization proceeds by means of a VCl3·LiClA–Al(i-Bu)3 complex by a coordinated anionic mechanism. The polymers obtained by these catalysts are highly crystalline. Styrene was also polymerized by using the same catalysts. VCl3·LiCl and VCl3·LiCl–THF complex yielded amorphous polymer by cationic polymerization. When VCl3·LiCl was combined with 6 mole-eq of Al(i-Bu)3, the resulting polystyrene was highly crystalline and had an isotactic structure, while the VCl2·2LiCl–Al(i-Bu)3 (1:6) system yielded traces of polymer of extremely low stereoregularity. The results indicate that the effective vanadium component at Al/V ≧ 6 is trivalent and that the mechanism is a coordinated anionic one.  相似文献   

17.

The catalytic activity of the systems based on titanium(iv) alkoxides (Ti(OPri)4, Ti(OPri)2(OCH(CF3)2)2, and Ti(OCH(CF3)2)4) and mixtures of alkylaluminum chlorides (Et2AlCl or Et3Al2Cl3) with dibutylmagnesium in ethylene polymerization and ethylene copolymerization with propylene and 5-ethylidene-2-norbornene was studied. Ultrahigh-molecular-weight polyethylene with the molecular weight reaching 4.9 · 106 Da was found to be formed in the homopolymerization reaction, whereas copolymerization gives ter-copolymers containing propylene (up to 35 mol.%) and 5-ethylidene-2-norbornene (4.3 mol.%) units.

  相似文献   

18.
A soluble ethylene catalyst were obtained by mixing a methylene dichloride solution of dichlorobis(γ-cyclopentadienyl) titanium (Cp2TiCl2) with a heptane solution of ethylaluminium sesquichloride (Al2Et3Cl3) or of diethylaluminium chloride (AlEt2Cl). Ethylene was polymerized using these catalysts; the solution was examined by electron spin resonance technique before the polymerization and during the reaction. The catalyst activity remained constant for a long period, and the polymerization went on at the same rate for 6–8 hr. The mechanism of the reaction is discussed.  相似文献   

19.
Soluble complexes of group (IV) metallocenes anchored on a substituted polyhedral oligomeric silsesquioxane trisilanol support were prepared and characterized. These catalyst precursors formulated as [M(O^O^O)X] are found to be active in polymerization of ethylene at high temperature in combination with ethylaluminum sesquichloride (Et3Al2Cl3, EASC) as co‐catalyst. The polyethylene obtained by these catalysts is linear, crystalline and displays narrow dispersity. The unique low molecular weight PE formed in this reaction exhibits properties comparable to commercial micronized PE waxes that have potential industrial applications in surface coating and ink formulations. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

20.
Titanium(IV) coordination compounds are effectively used as precatalysts for ethylene polymerization and copolymerization with other olefins. New titanium(IV) complexes 3b – d with ligands containing two diphenylcarbinol fragments linked by the perfluorinated hydrocarbon units –CF2– or –C2F4– were synthesized. The structures of complexes 3b and 3d were determined by X-ray diffraction. Titanium atoms in 3b have a distorted trigonal-bipyramidal coordination environment while spiro-complex 3d is characterized by tetrahedral molecular geometry. The catalytic behavior of complexes activated by mixtures of Bu2Mg and alkylaluminium chlorides from among Me2AlCl, Et2AlCl, EtAlCl2, and Et3Al2Cl3 were studied. The resulting catalytic systems catalyze ethylene polymerization to afford ultra-high molecular weight polyethylene, suitable for modern processing methods, and the solvent-free solid state formation of super high-strength (1.37–2.75 GPa) and high-modulus (up to 138 GPa) oriented film tapes. The same catalytic systems catalyze ethylene copolymerization with 1-hexene to afford high molecular weight semicrystalline elastomeric polymers containing up to 20% of comonomer units.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号