首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Core crosslinked star (CCS)‐polymers with water‐soluble arms composed of poly(N‐hydroxyethylacrylamide) (PHEAA) are described. N‐Hydroxyethylacrylamide was polymerized by the atom transfer radical polymerization consisting of ethyl 2‐chloropropionate, copper(I) chloride (CuCl), and tris[2‐(dimethylamino)ethyl]amine in an ethanol/water mixed solvent at 20 °C. The obtained PHEAA‐arms were subsequently coupled using N,N′‐methylenebisacrylamide as the crosslinking agent and sodium L ‐ascorbic acid (AscNa) as the reaction activator. A total of 17 representative coupling reactions with diverse conditions are discussed together with the characterizations of the products mainly by size exclusion chromatograph equipped with the multiangle laser light scattering detector (SEC‐MALS). Consequently, the coupling reactions provided CCS‐polymers with PHEAA‐arms (CCS‐PHEAAs) having weight averaged‐molecular weights determined by SEC‐MALS (Mw,MALS) ranging from 63.8 kg mol?1 to 832 kg mol?1, which corresponded to the average arm‐number (Narm) ranging from 4.1 to 42, respectively. CCS‐PHEAA with the Mw,MALS of 250 kg mol?1 was isolated and characterized by small angle X‐ray scattering measurements in 0.05 M NaNO3 aq. at 25 °C, which was shown to possess a star‐shaped structure and exist as single molecules with a radius of gyration at the infinite dilution condition (<Rg2>z,01/2) of 74 ± 4 Å. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

2.
In many applications, a functional additive is blended into a polymer matrix to enhance its properties. However, when the polymer and functional additive are applied to a surface, the functional molecule may be easily lost. In favorable cases, it may be possible to incorporate the additive directly into the polymer as a comonomer. In this study, a functionalized polymer has been obtained through the combination of linking a photodynamic, antimicrobial dye, Rose Bengal, to vinyl benzyl chloride via etherification and then polymerizing this into a water‐soluble polymer using chain growth copolymerization. Characterization of the efficiency of synthesis, solubility of the final product, and singlet oxygen production rate has been performed. Dialysis was used to determine the extent of incorporation of the dye into the polymer. The chemical structure of the intermediate produced through etherification has been verified. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2015 , 53, 1594–1599  相似文献   

3.
A series of water‐soluble siloxane polymers with pendent phosphorylcholine (PC) and sulfobetaine (SB) zwitterions was prepared using thiol‐ene “click” chemistry. Specifically, well‐defined vinyl‐substituted siloxane homopolymers and block copolymers were functionalized with small molecule zwitterionic thiols at room temperature. Rapid and quantitative substitution of the pendent vinyl groups was achieved, and zwitterionic polysiloxanes of narrow molecular weight distribution were obtained. The PC‐ and SB‐substituted polymers were found to be readily soluble in pure, salt‐free water. Critical micelle concentrations (CMCs) of these polymers in water were measured using a pyrene fluorescence probe, with CMC values estimated to be <0.01 g/L. Polymer aggregates were studied by dynamic light scattering, and the micelles generated from the PC block copolymers were visualized, after drying, by transmission electron microscopy. Aqueous solutions of these zwitterionic polysiloxanes significantly reduced the oil‐water interfacial surface tension, functioning as polymer amphiphiles that lend stability to oil‐in‐water emulsions. © 2015 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2016 , 54, 127–134  相似文献   

4.
The synthesis of a water‐soluble copolymer containing quinoline groups, P(DMAM‐co‐SDPQ), through free radical copolymerization of N,N‐dimethylacrylamide, DMAM, with 2,4‐diphenyl‐6‐(4‐vinylphenyl)quinoline, SDPQ, is presented and the optical properties of the final product are investigated in aqueous solution as a function of pH. It is found that the emission peak of SDPQ is red‐shifted from 411 to 484 nm with decreasing pH, due to the protonation of quinoline groups at low pH, suggesting that this copolymer may function as a luminescent pH‐indicator. Moreover, the copolymer exhibits the characteristics of a luminescent pH‐detector within the pH range 2 < pH < 4, as in this pH region the ratio of the emission intensity at 411 nm over that at 484 nm changes linearly in a logarithmic scale with the pH of the solution. Finally, the formation of less polar quinoline clusters in the aqueous P(DMAM‐co‐SDPQ) solution upon increasing pH was detected through Nile red probing. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 2078–2083, 2010  相似文献   

5.
Starting from the synthesis of a new methanofullerene derivative bearing an alcohol group, we report on the preparation of a water‐soluble, fullerene‐pendant copolymer. This multifunctional, C60‐pendant maleic anhydride copolymer was characterized by conductometric titration, Fourier transform infrared and ultraviolet spectroscopy, thermogravimetric analysis, and cyclic voltammetry. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 5814–5822, 2005  相似文献   

6.
Several water‐soluble polymers were used as templates for the in situ polymerization of pyrrole to determine their effect on the generation of nanosized polypyrrole (PPy) particles. The polymers used include: polyvinyl alcohol (PVA), polyethylene oxide (PEO), poly(vinyl butyral), polystyrene sulfonic acid, poly(ethylene‐alt‐maleic anhydride) (PEMA), poly(octadecene‐alt‐maleic anhydride), poly(N‐vinyl pyrrolidone), poly(vinyl butyral‐co‐vinyl alcohol‐co‐vinyl acetate), poly(N‐isopropyl acrylamide), poly(ethylene oxide‐block‐propylene oxide), hydroxypropyl methyl cellulose, and guar gum. The oxidative polymerization of pyrrole was carried out with FeCl3 as an oxidant. The morphology of PPy particles obtained after drying the resulting aqueous dispersions was examined by optical microscopy, and selected samples were further analyzed via atomic force microscopy. Among the template polymers, PVA was the most efficient in generating stable dispersions of PPy nanospheres in water, followed by PEO and PEMA. The average size of PPy nanospheres was in the range of 160 nm and found to depend on the molecular weight and concentration of PVA. Model reactions and kinetics of the polymerization reaction of pyrrole in PVA were carried out by hydrogen 1H NMR spectroscopy using ammonium persulfate as an oxidant. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

7.
In this study, we described the fundamental properties of novel polymer monoliths that were prepared from a water‐soluble crosslinking agent. Each monolith was evaluated by scanning electron microscope (SEM) and scanning probe microscope (SPM) to observe the monolithic structure, and the polymer films that were prepared from several monomers were evaluated by the contact angle of water. As results of evaluations, the polymer prepared from a water‐soluble crosslinking agent had high hydrophilicity. Furthermore, SEM evaluations suggested that polymer porogenic solvent (PEG) was contributed to the construction of monolithic structure, and the polymerization degree of PEG was also taken effect of the structural changing by the variation of phase separation. Additionally, the results of SPM evaluations and the differences of monolithic structure were also reflected under water condition although the swelling of polymer was observed. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 3811–3817, 2007  相似文献   

8.
The synthesis and characterization of barbiturate‐ and thiobarbiturate‐functionalized polystyrene from polystyrene homopolymer by polymer‐modification reactions is discussed. Polystyrene homopolymer quantitatively functionalized at the para postion with diethyl oxomalonate functionality was subjected to a condensation reaction with urea and thiourea in the presence of sodium methoxide in methanol. This reaction proceeded essentially to quantitative conversion to the barbiturate‐ (BAPS) and thiobarbiturate‐functionalized polystyrenes (TBAPS) as estimated by 1H NMR, UV, and IR spectroscopies. Thus, several copolymers of styrene with barbiturate‐ and thiobarbiturate‐functionalized styrene were synthesized. The detailed characterizations of quantitatively functionalized polystyrene using gel permeation chromatographic, IR, UV, and 1H NMR spectroscopic techniques as well as thermogravimetric analysis are discussed. An application of the newly synthesized polymer in removing Cu(II) ions from aqueous solution is demonstrated. This is the first report on the synthesis of BAPS and TBAPS by the polymer‐modification route or otherwise. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 731–737, 2002; DOI 10.1002/pola.10154  相似文献   

9.
The amphiphilic poly(AM‐co‐SA)‐ITXH macrophotoinitiator was synthesized by precipitation photopolymerization under UV irradiation with isopropylthioxanthone (ITX) as free radical photoinitiator. A novel method has been developed to prepare amphiphilic core‐shell polymer nanospheres via photopolymerization of methyl methacrylate (MMA) in aqueous media, with amphiphilic copolymer macrophotoinitiator poly(AM‐co‐SA)‐ITXH. During polymerization, the amphiphilic macroradicals underwent in situ self‐assembly to form polymeric micelles, which promoted the emulsion polymerization of the monomer. Thus, amphiphilic core‐shell nanospheres ranging from 70 to 140 nm in diameter were produced in the absence of surfactant. The conversion of the monomer, number average molecular weights (Mn), and particle size were found to be highly dependent on the macrophotoinitiator and monomer concentration. The macrophotoinitiator and amphiphilic particles were characterized by FTIR, UV‐vis, 1H NMR, TEM, DSC, and contact angle measurements. The results showed the particles had well‐defined amphiphilic core‐shell structure. This new method is scientifically and technologically significant because it provides a commercially viable route to a wide variety of novel amphiphilic core‐shell nanospheres. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 936–942, 2010  相似文献   

10.
Water‐soluble electrically conductive polymer poly(3,4‐ethylenedioxythiophene) (PEDOT) was synthesized by the enzymatic‐catalyzed method using 3,4‐ethylenedioxythiophene (EDOT) as monomer, poly(styrenesulfonate) (PSS) as water‐soluble polyelectrolyte, horseradish peroxidase enzyme as catalyst, and hydrogen peroxide (H2O2) as oxidant. Fourier transform infrared spectra and UV–vis absorption spectra confirm the successful enzymatic‐catalyzed polymerization of PEDOT. Dynamic light scattering data confirm the formation of a stable PEDOT:PSS aqueous dispersion. The thermo gravimetric data show that the obtained PEDOT is stable over a fairly high range of temperatures. The atomic force microscopy height images show that the PEDOT:PSS aqueous dispersion can form excellent homogeneous and smooth films on various substrates by conventional solution processing techniques, which renders this PEDOT:PSS aqueous dispersion a very promising candidate for various application in electronic devices. This enzymatic polymerization is a new approach for the synthesis of optical and electrical active PEDOT polymer, which benefits simple setting, high yields, and environmental friendly route. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

11.
Preparation and study of a series of copolymers incorporating 2‐vinyl‐4,4‐dimethylazlactone (VDMA) is reported. The reactivity ratios for photo‐initiated free radical copolymerization of VDMA with methacrylic acid (MAA), acrylic acid (AA), acrylamide (AAm), dimethylacrylamide (DMAA), hydroxyethyl methacrylate (HEMA), methoxy poly(ethylene glycol) methacrylate (MPEG300MA), and 2‐methacryloyloxyethyl phosphorylcholine (MPC), were determined by fitting comonomer conversion data obtained by in situ 1H NMR to a terminal copolymerization equation. Semi‐batch photo‐copolymerizations were then used to synthesize the corresponding VDMA copolymers with constant composition. Their solubility and dissolution behavior, as well as their hydrolysis half‐lives under physiological conditions, were determined. P(VDMA‐co‐MAA) copolymers with 52 to 93 mol % VDMA showed decreasing initial solubility and increasing hydrolysis half‐lives with increasing VDMA content. VDMA copolymers with nonionic monomers AAm and DMAA were water soluble only at VDMA contents of 41 and 22 mol % or less, respectively, and showed longer hydrolysis half‐lives than comparable MAA copolymers. VDMA copolymers with HEMA and MPEG300MA were found to crosslink during storage, so their hydrolysis half‐lives were not determined. VDMA copolymers with 18% zwitterionic MPC showed a much longer half‐life and superior initial solubility compared to analogous p(VDMA‐co‐MAA), identifying this copolymer as a promising candidate for macromolecular crosslinkers in, for example, aqueous layer‐by‐layer co‐depositions with polyamines. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2012  相似文献   

12.
The reaction of methacryloyl chloride with 5‐aminotetrazole gave the polymerizable methacrylamide derivative 5‐(methacrylamido)tetrazole ( 4 ) in one step. The monomer had an acidic tetrazole group with a pKa value of 4.50 ± 0.01 in water methanol (2:1). Radical polymerization proceeded smoothly in dimethyl formamide or, after the conversion of monomer 4 into sodium salt 4‐Na , even in water. A superabsorbent polymer gel was obtained by the copolymerization of 4‐Na and 0.08 mol % N,N′‐methylenebisacrylamide. Its water absorbency was about 200 g of water/g of polymer, although the extractable sol content of the gel turned out to be high. The consumption of 4‐Na and acrylamide (as a model compound for the crosslinker) during a radical polymerization at 57 °C in D2O was followed by 1H NMR spectroscopy. Fitting the changes in the monomer concentration to the integrated form of the copolymerization equation gave the reactivity ratios r 4‐Na = 1.10 ± 0.05 and racrylamide = 0.45 ± 0.02, which did not differ much from those of an ideal copolymerization. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 4333–4343, 2002  相似文献   

13.
New water‐soluble methacrylate polymers with pendant quaternary ammonium (QA) groups were synthesized and used as antibacterial materials. The polymers with pendant QA groups were obtained by the reaction of the alkyl halide groups of a previously synthesized functional methacrylate homopolymer with various tertiary alkyl amines containing 12‐, 14‐, or 16‐carbon alkyl chains. The structures of the functional polymer and the polymers with QA groups were confirmed with Fourier transform infrared and 1H and 13C NMR. The degree of conversion of alkyl halides to QA sites in each polymer was determined by 1H NMR to be over 90% in all cases. The number‐average molecular weight and polydispersity of the functional polymer were determined by size exclusion chromatography to be 32,500 g/mol and 2.25, respectively. All polymers were thermally stable up to 180 °C according to thermogravimetric analysis. The antibacterial activities of the polymers with pendant QA groups against Staphylococcus aureus and Escherichia coli were determined with broth‐dilution and spread‐plate methods. All the polymers showed excellent antibacterial activities in the range of 32–256 μg/mL. The antibacterial activity against S. aureus increased with an increase in the alkyl chain length for the ammonium groups, whereas the antibacterial activity against E. coli decreased with increasing alkyl chain length. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5965–5973, 2006  相似文献   

14.
Water‐soluble polymeric amphiphiles derived from acrylamido‐2‐methyl‐1‐propane sulfonic acid (AMPS) and octadecyl monomers in which the linker groups vary among acryloyl [octadecyl methacrylate (ODMAc)], maleate [octadecyl maleate ester (ODME)], and maleamic acid [octadecyl maleamic acid (ODMA)] have been synthesized. The dissociation behavior in water from potentiometric titration suggests that these polymers show resistance to neutralization. This might arise from coil structures, which effect the destabilization of sulfonate ions because of a proximity effect. The effect of the ? COOH group in modifying the dissociation behavior in the copolymers AMPS–ODME and AMPS–ODMA is indicated. The ratio of the intensities of the third vibronic peak (I3) to the first vibronic peak (I1) of the fluoroprobe pyrene in the presence of polymer solutions shows negligible changes as a function of pH, and this suggests the retention of micropolarity. The high I3/I1 value observed in the presence of the ODMAc polymer suggests intermolecular association. The reduction in the reduced viscosity with the concentration of the polymers suggests the polyelectrolyte behavior of all the copolymers. The progressive decrease in the reduced viscosity from 120 to 95 mL/g when the degree of ionization increases from 0.5 to 1 for the ODME polymer suggests changes in the solution structure. AMPS–ODMA and AMPS–ODME polymers exhibit significant adsorption at the interface and exhibit equilibrium surface tensions of 58.8 and 56.3 mN/m, respectively. The lower surface activity and higher reduced viscosity of ODMAc polymer solutions further support the formation of intermolecular associated or network structures. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 314–324, 2006  相似文献   

15.
We report the synthesis of a water‐soluble diblock copolymer composed of polysulfonic diphenyl aniline (PSDA) and poly(ethylene oxide) (PEO), which was prepared by reacting an amine‐terminated PSDA and tosylate PEO (PEO‐Tos). First, a HCl‐mediated polymerization of sulfonic diphenyl aniline monomer with the formation of HCl‐doped PSDA was carried out. After its neutralization and reduction, a secondary amine‐functionalized PSDA was obtained. Second, PEO‐Tos was synthesized via the tosylation of the monohydroxyl PEO methyl ether with tosylol chloride. Diblock copolymers with various PEO segment lengths (PSDA‐b‐PEO‐350 and PSDA‐b‐PEO‐2000) were obtained with PEO‐350 [number‐average molecular weight (Mn) = 350] and PEO‐2000 (Mn = 2000). The prepolymers and diblock copolymers were characterized by Fourier transform infrared spectroscopy, NMR, mass spectrometry, and ultraviolet–visible light. They had relatively low conductivities, ranging from 10?6 to 10?3 S/cm, because of the withdrawing effect of the sulfonic group as well as the steric effects of the bulky aromatic substitutuents at the N sites of the polyaniline backbone and of the PEO block. These polymers were self‐doped, and an intermolecular self‐doping was suggested. The external doping was, however, more effective. The self‐doping induced aggregation in water among the PSDA backbones, which was also stimulated by the presence of hydrophilic PEO blocks. Furthermore, the electrical conductivities of the diblock copolymers were strongly temperature‐dependent. PSDA‐b‐PEO‐2000 exhibited about one order of magnitude increase in conductivity upon heating from 32 to 57 °C. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2179–2191, 2004  相似文献   

16.
This article explores the feasibility of poly(pentafluorophenyl methacrylate) (PPFMA) prepared by reversible addition fragmentation chain transfer (RAFT) polymerization as a platform for the preparation of diverse libraries of functional polymers via postpolymerization modification with primary amines. Experiments with a broad range of functional amines and PPFMA precursors of different molecular weights indicated that the postpolymerization modification reaction proceeds with good to excellent conversion for a diverse variety of functional amines and is essentially independent of the PPFMA precursor molecular weight. The RAFT end group, which was well preserved throughout the polymerization, is cleaved during postpolymerization modification to generate a thiol end group that provides possibilities for further orthogonal chain‐end modification reactions. The degree of postpolymerization modification can be controlled by varying the relative amount of primary amine that is used and random polymethacrylamide copolymers can be prepared via a one‐pot/two‐step sequential addition procedure. Cytotoxicity experiments revealed that the postpolymerization modification strategy does not lead to any additional toxicity compared with the corresponding polymer obtained via direct polymerization, which makes this approach also of interest for the synthesis of biologically active polymers. © 2009 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 4332–4345, 2009  相似文献   

17.
Proton transfer polymerization through thiol‐epoxy “click” reaction between commercially available and hydrophilic di‐thiol and di‐epoxide monomers is carried out under ambient conditions to furnish water‐soluble polymers. The hydrophilicity of monomers permitted use of aqueous tetrahydrofuran as the reaction medium. A high polarity of this solvent system in turn allowed for using a mild catalyst such as triethylamine for a successful polymerization process. The overall simplicity of the system translated into a simple mixing of monomers and isolation of the reactive polymers in an effortless manner and on any scale required. The structure of the resulting polymers and the extent of di‐sulfide defects are studied with the help of 13C‐ and 1H‐NMR spectroscopy. Finally, reactivity of the synthesized polymers is examined through post‐polymerization modification reaction at the backbone sulfur atoms through oxidation reaction. The practicality, modularity, further functionalizability, and water solubility aspects of the described family of new poly(β‐hydroxythio‐ether)s is anticipated to accelerate investigations into their potential utility in bio‐relevant applications. © 2017 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2017 , 55, 3381–3386  相似文献   

18.
The effect of magnetic field (MF) on the radical copolymerization of a series of water‐soluble and ionic monomers is presented including acrylamide (AM), acrylic acid (AA), its ionized form acrylate (A?), and diallyldimethylammonium chloride (DADMAC). The following combinations have been studied: AM/AA, AM/A?, AM/DADMAC, and AA/DADMAC. In addition to the MF, strong electrostatic interactions are present for the majority of monomer combinations and conditions. Although the monomer consumption rate (Rp) increased up to 65% applying a MF of 0.1 Tesla, the composition of the resulting copolymers was not affected under such conditions. Despite this increase of Rp by MF, the electrostatic repulsion between ionic monomers and charged growing radicals dominates Rp and governs the copolymer composition with and without MF. The order of the experimentally obtained reactivity ratios reflects the extent of electrostatic interaction: rAM/AA (1.41) < r (3.10) < rAA/DADMAC (4.25) < rAM/DADMAC (6.95) and rAA/AM (2.20) > rDADMAC/AA (0.25) > r (0.17) > rDADMAC/AM (0.03). Overall, weak MF offers to reduce the production time without modifying the product composition. © 2008 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 47: 373–383, 2009  相似文献   

19.
20.
A novel, water‐soluble Rh complex, (nbd)Rh[PPh2(m‐NaOSO2C6H4)] [C(Ph)?CPh2] ( 1 ) was synthesized by the reaction of [(nbd)RhCl]2, Ph2P(m‐NaOSO2C6H4) and Ph2C?C(Ph)Li, whose structure was determined by NMR and IR spectroscopies. The Rh catalyst 1 induced the polymerization of phenylacetylene (PA) in water to give two kinds of polymers; one was soluble in organic solvents such as tetrahydrofuran (THF) and CHCl3, and the other was insoluble in common organic solvents. The polymerization of sodium p‐ethynylbenzoate (p‐NaOCO‐PA) homogeneously proceeded with 1 in water at 60 °C to give the polymer in high yield. Poly(p‐NaOCO‐PA) was treated with 1 N HCl and then reacted with (CH3)3SiCHN2 to obtain poly(p‐MeOCO‐PA). The methyl‐esterified polymer was insoluble in THF and CHCl3, which suggests that the formed poly(p‐MeOCO‐PA) has cis–cisoidal structure. The polymer obtained from the polymerization of [p‐CH3(OCH2CH2)2O2CC6H4]C?CH with 1 in water was soluble in methanol, ethanol, and THF, and partly soluble in water. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 2100–2105, 2004  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号