首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A polymer having a trithiocarbonate moiety in the main chain was applied as a polymeric precursor to the synthesis of a sequence ordered polymer by insertion polymerization of styrene into the main chain by a RAFT mechanism.  相似文献   

2.
The polymerization of 4‐vinylpyridine was conducted in the presence of a cyclic trithiocarbonate (4,7‐diphenyl‐[1,3]dithiepane‐2‐thione) as a reversible addition–fragmentation transfer (RAFT) polymerization agent, and a multiblock polymer with narrow‐polydispersity blocks was prepared. Two kinds of multiblock copolymers of styrene and 4‐vinylpyridine, that is, (ABA)n multi‐triblock copolymers with polystyrene or poly(4‐vinylpyridine) as the outer blocks, were prepared with multiblock polystyrene or poly(4‐vinylpyridine) as a macro‐RAFT agent, respectively. GPC data for the original polymers and polymers cleaved by amine demonstrated the successful synthesis of amphiphilic multiblock copolymers of styrene and 4‐vinylpyridine via two‐step polymerization. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 2617–2623, 2007  相似文献   

3.
Two trithiocarbonate reversible addition fragmentation chain transfer (RAFT) agents are compared in miniemulsion polymerization of styrene and butyl acrylate and the formation of seeded emulsion block copolymers. The order of block synthesis and the number of block segments per polymer are discussed. The use of nonionic surfactants is examined and the type of surfactant in relation to the monomer used is found to have a significant affect on latex formation. Conditions are shown by which AB and ABA type block copolymers can be successfully prepared via a seeded RAFT‐mediated emulsion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 588–604, 2007  相似文献   

4.
A new reversible addition‐fragmentation chain transfer (RAFT) agent, dendritic polyester with 16 dithiobenzoate terminal groups, was prepared and used in the RAFT polymerization of styrene (St) to produce star polystyrene (PSt) with a dendrimer core. It was found that this polymerization was of living characters, the molecular weight of the dendrimer‐star polymers could be controlled and the polydispersities were narrow. The dendrimer‐star block copolymers of St and methyl acrylate (MA) were also prepared by the successive RAFT polymerization using the dendrimer‐star PSt as macro chain transfer agent. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6379–6393, 2005  相似文献   

5.
Reversible addition–fragmentation chain transfer (RAFT) polymerization has been shown to be a facile means of synthesizing comb, star, and graft polymers of styrene. The precursors required for these reactions were synthesized readily from RAFT‐prepared poly(vinylbenzyl chloride) and poly(styrene‐co‐vinylbenzyl chloride), which gave intrinsically well‐defined star and comb precursors. Substitution of the chlorine atom in the vinylbenzyl chloride moiety with a dithiobenzoate group proceeded readily, with a minor detriment to the molecular weight distribution. The kinetics of the reaction were consistent with a living polymerization mechanism, except that for highly crowded systems, there were deviations from linearity early in the reaction due to steric hindrance and late in the reaction due to chain entanglement and autoacceleration. A crosslinked polymer‐supported RAFT agent was also prepared, and this was used in the preparation of graft polymers with pendant polystyrene chains. © 2002 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 40: 2956–2966, 2002  相似文献   

6.
A norbornene monomer bearing cyclic dithiocarbonate moiety (NB‐DTC) was successfully synthesized from the corresponding precursor having epoxy moiety by its reaction with carbon disulfide. NB‐DTC underwent the ring‐opening metathesis polymerization (ROMP) catalyzed by a ruthenium carbene complex to give the corresponding poly(norbornene). The dithiocarbonate moiety incorporated into the side chain of the obtained poly(norbornene) reacted with amine to afford the corresponding thiourethane moiety with thiol group, which underwent oxidative S‐S coupling and/or addition reaction to the C‐C double bond in the main chain, leading to formation of a cross‐linked polymer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011.  相似文献   

7.
A novel polymer bearing acyclic vicinal tricarbonyl moieties in the side chains was synthesized by (1) radical polymerization of a styrene derivative with a 1,3‐diketone structure and (2) successive treatment of the resulting polystyrene derivative by N‐bromosuccinimide to convert its 1,3‐diketone moiety in the side chains into the corresponding vicinal tricarbonyl moiety. The tricarbonyl moiety was highly reactive with water to permit its rapid conversion into a geminal diol structure in water‐containing acetone. On the other hand, heating the resulting polymer bearing the geminal diol structure under vacuum enabled successful recovery of the vicinal tricarbonyl moiety to demonstrate the reversible nature of this system, which allowed us to repeat the hydration–dehydration cycle without deteriorating the polymer structure. © 2011 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2011  相似文献   

8.
Reversible addition–fragmentation chain transfer (RAFT) polymerizations of styrene under microwave irradiation (MI), with or without azobisisobutyronitrile, were successfully carried out in bulk at 72 and 98 °C, respectively. The results showed that the polymerizations had living/controlled features, and there was a significant enhancement of the polymerization rates under MI in comparison with conventional heating (CH) under the same conditions. The polymer structures were characterized with 1H and 13C NMR. The results showed the same structure for both polymers obtained by MI and CH. Successful chain‐extension experimentation further demonstrated the livingness of the RAFT polymerization carried out under MI. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6810‐6816, 2006  相似文献   

9.
Structurally well‐defined end‐functionalized syndiotactic polystyrene (sPS) can be prepared by conducting a simultaneous selective chain transfer reaction during the syndiospecific polymerization of styrene in the presence of vinylsilanes. The production of vinylsilane end‐capped sPS involves a unique selective chain transfer pathway via the incorporation of a terminal vinylsilane unit at the polymer chain end by 2,1‐insertion. This unusual insertion pattern situates the bulky silyl functional group at a closer β‐position from the active catalyst center, thus deactivating the propagating chain by a steric jam between the vinylsilane end group and the active catalyst. Subsequently, chain releasing by hydrogen addition (in the presence of H2) or by β‐elimination (in the absence of H2) can take place, which leads to the production of end‐functionalized sPS with precise controls of stereoregularity and of the location of functionality. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 1690–1698, 2010  相似文献   

10.
A variety of polymer microspheres were successfully synthesized by the surface‐initiated atom transfer radical polymerization (SI‐ATRP) of monomers by using monodisperse polymer microsphere having benzyl halide moiety as a multifunctional polymeric initiator. First, a series of monodisperse polymer microsphere having benzyl chloride with variable monomer ratio (P(St‐DVB‐VBC)) were synthesized by the precipitation polymerization of styrene (St), divinylbenzene (DVB), and 4‐vinylbenzyl chloride (VBC). Next, hairy polymer microspheres were synthesized by the surface‐initiated ATRP of various monomers with P(St‐DVB‐VBC) microsphere as a multifunctional polymeric initiator. The hair length determined by the SEC analysis of free polymer was increased with the increase of M/I. These hairy polymer microspheres were characterized by SEM, FT‐IR, and Cl content measurements. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019, 57, 1296–1304  相似文献   

11.
Reversible addition–fragmentation chain transfer polymerization has been successfully applied to polymerize acrylonitrile with dibenzyl trithiocarbonate as the chain‐transfer agent. The key to success is ascribed to the improvement of the interchange frequency between dormant and active species through the reduction of the activation energy for the fragmentation of the intermediate. The influence of several experimental parameters, such as the molar ratio of the chain‐transfer agent to the initiator [azobis(isobutyronitrile)], the molar ratio of the monomer to the chain‐transfer agent, and the monomer concentration, on the polymerization kinetics and the molecular weight as well as the polydispersity has been investigated in detail. Matrix‐assisted laser desorption/ionization time‐of‐flight mass spectrometry and 1H NMR analyses have confirmed the chain‐end functionality of the resultant polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 490–498, 2006  相似文献   

12.
Radical polymerization of styrene derivatives having a series of amino acid, alanine, glycine, leucine, valine, Boc‐leucine, and Boc‐valine, in the side chain bound at the C‐terminal was conducted to regulate the stereoinduction system in the propagation step. Isotacticity increased in the polymer main chain, especially in the polymerization of monomers bearing N‐free L ‐leucyl and L ‐valyl esters in THF or DMF at 50 °C, by the synergic stereoregulation with chirality control and hydrogen bonding between the radical polymer terminal and the monomer. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

13.
Reversible addition‐fragmentation chain transfer (RAFT) polymerization of a typical hydrophobic monomer of styrene within microreactor of shell‐corona hollow microspheres of poly(styrene‐co‐methacrylic acid) suspending in water is studied. The shell‐corona hollow microspheres contain a hydrophilic corona of poly(methacrylic acid) (PMAA) and a cross‐linked polystyrene shell, which can suspend in water because of the hydrophilic corona of PMAA. The size of the shell‐corona hollow microspheres is about 289 nm and the extent of the microcavity of the hollow microsphere is 154 nm. These shell‐corona hollow microspheres can act as microreactor, within which the typical hydrophobic monomer of styrene, the RAFT agent of S‐benzyl dithiobenzoate and the initiator of 2,2′‐azobisisobutyronitrile can be encapsulated and RAFT polymerization of styrene takes place in well controlled manner in water. It is found that the resultant polymer of polystyrene has a competitively low polydispersity index and its number‐average molecular weight linearly increases with monomer conversion. The method is believed to be a new strategy of RAFT polymerization of hydrophobic monomer in aqueous solution. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

14.
A series of selenium‐substituted carbonates, S,Se‐dibenzyl dithioselenocarbonate (DTSC), S,Se‐dibenzyl thiodiselenocarbonate (TDSC), and Se,Se‐dibenzyl triselenocarbonate (TSC), were synthesized and used as mediators in radical polymerization. The results indicate that these selenium‐substituted carbonates can control the polymerization of styrene (St) and methyl acrylate, as evidenced by the number‐average molecular weight that increased linearly with the monomer conversion, molecular weights that agreed well with the predicted values, and successful chain extensions. The treatment of the resultant polystyrene by hydrogen peroxide generated polymers with approximately half‐reduced molecular weights, and the absence of carbonate groups and vinyl double bond‐terminated chain ends. The polymerization with these selenium‐substituted carbonates was the same polymerization mechanism as their analogue, the widely used S,S‐dibenzyl trithiocarbonate. This work provided a flexible protocol to incorporate selenium into the polymer chain backbone. Specifically, the treatment of these polymers by oxidation produced “clickable” vinyl‐terminated chain ends, which provided possibilities for further functionalization, for example, via a thiol‐ene click reaction. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2013, 51, 2606–2613  相似文献   

15.
Dispersion polymerization was applied to the controlled/living free‐radical polymerization of styrene with a reversible addition–fragmentation chain transfer (RAFT) polymerization agent in the presence of poly(N‐vinylpyrrolidone) and 2,2′‐azobisisobutyronitrile in an ethanol medium. The effects of the polymerization temperature and the postaddition of RAFT on the polymerization kinetics, molecular weight, polydispersity index (PDI), particle size, and particle size distribution were investigated. The polymerization was strongly dependent on both the temperature and postaddition of RAFT, and typical living behavior was observed when a low PDI was obtained with a linearly increased molecular weight. The rate of polymerization, molecular weight, and PDI, as well as the final particle size, decreased with an increased amount of the RAFT agent in comparison with those of traditional dispersion polymerization. Thus, the results suggest that the RAFT agent plays an important role in the dispersion polymerization of styrene, not only reducing the PDI from 3.34 to 1.28 but also producing monodisperse polystyrene microspheres. This appears to be the first instance in which a living character has been demonstrated in a RAFT‐mediated dispersion polymerization of styrene while the colloidal stability is maintained in comparison with conventional dispersion polymerization. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 348–360, 2007  相似文献   

16.
A new trithiocarbonate 1 bearing two hydroxyl moieties was synthesized and employed as a RAFT agent for radical polymerization of vinyl monomers. 1 mediated RAFT polymerizations of styrene and ethyl acrylate to give the corresponding polymers with predictable molecular weights and narrow molecular weight distributions. Structural analyses of the polymers with NMR and MALDI‐TOF mass techniques revealed that they were telechelic ones, of which both chain ends were endowed with hydroxyl groups inherited from trithiocarbonate 1 . Usefulness of these telechelic polymers as polymeric diol‐type building blocks was demonstrated in their polyaddition with diisocyanates, which gave the corresponding polyurethanes. © 2012 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2013  相似文献   

17.
The synthesis of statistical and block copolymers, consisting of monomers often used as resist materials in photolithography, using reversible addition‐fragmentation chain transfer (RAFT) polymerization is reported. Methacrylate and acrylate monomers with norbornyl and adamantyl moieties were polymerized using both dithioester and trithiocarbonate RAFT agents. Block copolymers containing such monomers were made with poly(methyl acrylate) and polystyrene macro‐RAFT agents. In addition to have the ability to control molecular weight, polydispersity, and allow block copolymer formation, the polymers made via RAFT polymerization required end‐group removal to avoid complications during the photolithography. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 943–951, 2010  相似文献   

18.
Poly(thiourethane)s having a siloxane moiety in the side chain were synthesized with a 5‐membered cyclic dithiocarbonate (DTC) having a siloxane group as a building block. The synthetic pathway consisted of (1) an addition reaction of the DTC with diamines and (2) polyaddition reactions of the resulting dithiols with diisocyanates. The siloxane moiety in the polymer side chain underwent a self‐condensation reaction upon exposure to moisture, and this led to a successful crosslinking reaction of the poly(thiourethane). The crosslinking on a silicate surface was accompanied by condensation between the siloxane side chain of the polymer and the silanol group on the surface, giving the corresponding surface that was permanently coated with the crosslinked polymer. © 2005 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 43: 6492–6502, 2005  相似文献   

19.
Nitroxide‐mediated, controlled living radical polymerization was employed to introduce terpyridine ligands at one or two chain ends of polystyrene. For this purpose, a unimolecular initiator bearing both a terpyridine ligand as well as a mediating nitroxide was synthesized and used for the controlled polymerization of styrene. Moreover, a maleimide‐functionalized terpyridine was prepared in order to synthesize telechelic polymers, utilizing nitroxide substitution reactions. Kinetic studies of the polymerization of styrene were carried out. In all polymerizations, special attention was focused on the retention of end‐group functionality, in light of the effects of autoinitiation and autopolymerization. © 2004 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 42: 4016–4027, 2004  相似文献   

20.
The copolymerization of N‐phenyl maleimide and p‐chloromethyl styrene via reversible addition–fragmentation chain transfer (RAFT) process with AIBN as initiator and 2‐(ethoxycarbonyl)prop‐2‐yl dithiobenzoate as RAFT agent produced copolymers with alternating structure, controlled molecular weights, and narrow molecular weight distributions. Using poly(N‐phenyl maleimide‐altp‐chloromethyl styrene) as the macroinitiator for atom transfer radical polymerization of styrene in the presence of CuCl/2,2′‐bipyridine, well‐defined comb‐like polymers with one graft chain for every two monomer units of backbone polymer were obtained. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 2069–2075, 2006  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号