首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 109 毫秒
1.
Two nitrilotriacetate cobalt complexes {[CoK2(NTA)(Hmta)(H2O)3]NO3}n ( 1 ) and [{Co(4,4′‐bpy)2(H2O)4}{Co2(NTA)2(4,4′‐bpy)(H2O)2}] ( 2 ) (NTA = nitrilotriacetate anion, Hmta = hexamethylenetetramine and 4,4′‐bpy = 4,4′‐bipyridine) were prepared and characterized by IR, elemental analysis and single crystal X‐ray diffraction study. The influence of the neutral ancillary ligands on the formation of the complexes with different structures in the Co‐NTA system was discussed. The coordination of NTA and Hmta to Co2+ ions only resulted in the formation of mononuclear [Co(NTA)(Hmta)]? ions which are further connected by K+ ions and water molecules to form a three‐dimensional network. The use of 4,4′‐bpy as ancillary ligand in 2 led to the formation of separate mononuclear [Co(4,4′‐bpy)2(H2O)4]2+ and dinuclear [Co2(NTA)2(4,4′‐bpy)(H2O)2]2? which are further connected by hydrogen bonds to form a supramolecular three‐dimensional network. In these cases it seems to suggest that the addition of neutral ancillary ligand into the Co‐NTA system leads to the formation of lower dimensional structures when the contribution of alkali ions to the structural dimensionality is neglected.  相似文献   

2.
A novel modified polyoxometalate, {PMo12O40[Cu(2,2′‐bpy)]}[Cu(2,2′‐bpy)(en)(H2O)]2 [2,2′‐bpy is 2,2′‐bipyridyl (C10H8N2) and en is ethylenediamine (C2H8N2)], has been synthesized hydrothermally and structurally characterized by elemental analysis, TG, IR, XPS and single‐crystal X‐ray diffraction. The structural analysis reveals that the compound contains the reduced Keggin polyanion [PMo12O40]6? as the parent unit, which is monocapped by [Cu(2,2′‐bpy)]2+ fragments via four bridging O atoms on an {Mo4O4} pit and bi‐supported by two [Cu(2,2′‐bpy)(en)(H2O)]2+ coordination cations simultaneously. There exist strong intramolecular π–π stacking between the capping and supporting units, which play a stabilizing role during the crystallization of the compound. Adjacent POM clusters are further aggregated to form a three‐dimensional supramolecular network through noncovalent forces, hydrogen bonding and π–π stacking interactions. In addition, the photocatalytic properties were investigated in detail, and the results indicated that the compound can be used as a photocatalyst towards the decomposition of the organic pollutant methylene blue (MB).  相似文献   

3.
The coordination polymers, {[Cu(Hbidc)(2, 2′‐bpy)(H2O)] · 2H2O}n ( 1 ) and {[Mn(Hbidc)(2, 2′‐bpy) (H2O)2] · 2H2O}n ( 2 ) (H3bidc = benzimidazole‐5, 6‐dicarboxylic acid, 2, 2′‐bpy = 2, 2′‐bipyridine), were synthesized in solution and characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis (TGA), and single‐crystal X‐ray diffraction. Complexes 1 and 2 consist of different 1D chain structures. In both compounds, 2, 2′‐bpy is chelating in a bidentate manner, whereas the Hbidc ligands in complexes 1 and 2 display chelating‐bridging tridentate and bridging bidentate coordination modes. The two complexes are further extended into 3D supramolecular structures through O–H ··· O and N–H ··· O hydrogen bonds. The thermal stabilities of complexes 1 and 2 were studied by thermogravimetric analyses (TGA).  相似文献   

4.
Reaction of MnSO4 · H2O, 2,2′‐bipyridine (bpy), suberic acid and Na2CO3 in CH3OH/H2O yielded a mixture of [Mn2(H2O)4(bpy)2(C8H12O4)2] · 2 H2O ( 1 ) and [Mn(H2O)2‐ (bpy)(C8H12O4)2/2] · H2O ( 2 ). In both complexes, the Mn atoms are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two trans positioned H2O molecules and two suberato ligands (d(Mn–O) = 2.107–2.328 Å; d(Mn–N) = 2.250–2.330 Å). The bis‐monodentate suberato ligands bridge Mn atoms to form dinuclear [Mn2(H2O)4(bpy)2(C8H12O4)2] complex molecules in 1 and 1D [Mn(H2O)2(bpy)(C8H12O4)2/2] chains in 2 . Via the intermolecular hydrogen bondings and π‐π stacking interactions, the dinuclear molecules in 1 are assembled into 2D networks parallel to (100), between which the crystal H2O molecules are sandwiched. The polymeric chains in 2 are linked together by interchain hydrogen bonding and π‐π stacking interactions into 3D networks with the crystal H2O molecules located in tunnels along [010]. Crystal data for 1 : P21/c (no. 14), a = 10.092(1) Å, b = 11.916(2) Å, c = 17.296(2) Å, β = 93.41(1)° and Z = 2. Crystal data for 2 : P21/c (no. 14), a = 11.176(2) Å, b = 9.688(1) Å, c = 37.842(6) Å, β = 90.06(1)° and Z = 8.  相似文献   

5.
In the presence of water, benzene‐1,4‐diboronic acid (1,4‐bdba) and 4,4′‐bipyridine (4,4′‐bpy) form a cocrystal of composition (1,4‐bdba)(4,4′‐bpy)2(H2O)2, in which the molecular components are organized in two, so far unknown, cyclophane‐type hydrogen‐bonding patterns. The asymmetric unit of the title compound, C6H8B2O4·2C10H8N2·2H2O, contains two 4,4′‐bpy, two water molecules and two halves of 1,4‐bdba molecules arranged around crystallographic inversion centers. The occurrence of O—H...O and O—H...N hydrogen bonds involving the water molecules and all O atoms of boronic acid gives rise to a two‐dimensional hydrogen‐bonded layer structure that develops parallel to the (01) plane. This supramolecular organization is reinforced by π–π interactions between symmetry‐related 4,4′‐bpy molecules.  相似文献   

6.
The one-pot hydrothermal reaction of CuCl2 with H2CPOA and 4,4'-bpy results in two new coordination polymers, [Cu(CPOA)(4,4'-bpy)(H2O)2]·1.5H2O (1) and [Cu2(HCPOA)4(4,4'-bpy)4] (2) (H2CPOA=4-carboxyphenoxy acetic acid, 4,4'-bpy=4,4'-bipyridine) since CPOA^2- anions reach equilibrium with HCPOA^- anions in the reaction system. The crystal structure of 1 shows a triple interpenetration CdSO4-like net with 1D channel, in which lattice water molecules are located. Complex 2 is a ladder-like 1D double chain structure assembled through coordination bonds and O—H…N hydrogen bonds.  相似文献   

7.
Two sulfato CuII complexes [Cu2(bpy)2(H2O)(OH)2(SO4)]· 4H2O ( 1 ) and [Cu(bpy)(H2O)2]SO4 ( 2 ) were synthesized and structurally characterized by single crystal X—ray diffraction. Complex 1 consists of the asymmetric dinuclear [Cu2(bpy)2(H2O)(OH)2(SO4)] complex molecules and hydrogen bonded H2O molecules. Within the dinuclear molecules, the Cu atoms are in square pyramidal geometries, where the equatorial sites are occupied by two N atoms of one bpy ligand and two O atoms of different μ2—OH groups and the apical position by one aqua ligand or one sulfato group. Through intermolecular O—H···O and C—H···O hydrogen bonds and intermolecular π—π stacking interactions, the dinuclear complex molecules are assembled into layers, between which the hydrogen bonded H2O molecules are located. The Cu atoms in 2 are octahedrally coordinated by two N atoms of one bpy ligand and four O atoms of two H2O molecules and two sulfato groups with the sulfato O atoms at the trans positions and are bridged by sulfato groups into 1[Cu(bpy)(H2O)2(SO4)2/2] chains. Through the interchain π—π stacking interactions and interchain C—H···O hydrogen bonds, the resulting chains are assembled into bi—chains, which are further interlinked into layers by O—H···O hydrogen bonds between adjacent bichains.  相似文献   

8.
A new octameric water cluster was observed in the complex Co2(dptc)(bipy)2(H2O)6 · 4H2O ( 1 ) (H4dptc = diphenyl‐3,3′,4,4′‐tetracarboxylic acid; bipy = 2,2′‐bipyridine), which was characterized by single‐crystal X‐ray diffraction, elemental analysis and IR spectroscopy. The centrosymmetric octamer consists of a water hexamer in the chair form and two water molecules and brings to light a novel mode of the cooperative association of water molecules. Those complex units are connected into a 2D infinite layer framework through hydrogen bonding. Consequently, the 2D layers are further aggregated by hydrogen bonding with octameric subunits and π ··· π stacking interactions to form a 3D supramolecular architecture.  相似文献   

9.
The reaction of NiCl2, K2C2O4·H2O and 2,2′‐bipyridine (bpy) in water–ethanol solution at 281 K yields light‐purple needles of the new pentahydrate of bis(2,2′‐bipyridine)oxalatonickel(II), [Ni(C2O4)(C10H8N2)2]·5H2O or [Ni(ox)(bpy)2]·5H2O, while at room temperature, deep‐pink prisms of the previously reported tetrahydrate [Ni(ox)(bpy)2]·4H2O [Román, Luque, Guzmán‐Miralles & Beitia (1995), Polyhedron, 14 , 2863–2869] were gathered. The asymmetric unit in the crystal structure of the new pentahydrate incorporates the discrete molecular complex [Ni(ox)(bpy)2] and five solvent water molecules. Within the complex molecule, all three ligands are bonded as chelates. The complex molecules are involved in an extended system of hydrogen bonds with the solvent water molecules. Additionally, π–π interactions also contribute to the stabilization of the extended structure. The dehydration of the pentahydrate starts at 323 K and proceeds in at least two steps as determined by thermal analysis.  相似文献   

10.
Yellow crystals of [Mn(H2O)2(bpy)(C4H4O4)] · H2O were obtained by the reaction of 2,2′‐bipyridine, succinic acid, MnSO4 · H2O and Na2CO3 in an aqueous methanol solution. The crystal structure (monoclinic, P21/c (no. 14), a = 8.294(1), b = 11.556(1), c = 17.064(1)Å, β = 95.181(6)°, Z = 4, R = 0.0349, wR2 = 0.0887) consists of 1D supramolecular helix chains [Mn(H2O)2(bpy)(C4H4O4)2/2] and hydrogen bonded H2O molecules. The Mn atoms are octahedrally coordinated by two N atoms of one bidentate chelating bpy ligand and four O atoms of two H2O molecules and two bis‐monodentate bridging succinato ligands with d(Mn–O) = 2.139–2.237Å and d(Mn–N) = 2.268, 2.281 Å. The helix chains are held together by π‐π stacking interactions and hydrogen bonds.  相似文献   

11.
Two coordination polymers, {[Zn2(L)(bpy)] · 2H2O}n ( 1 ) and [Zn2(L)(bpe)]n ( 2 ) [H4L = terphenyl‐2,2′,4,4′‐tetracarboxylic acid, bpy = 4,4′‐bipyridine, and bpe = 1,2‐bis(4‐pyridyl)ethane], were hydrothermally synthesized under similar conditions and characterized by elemental analysis, IR spectroscopy, TGA, and single‐crystal X‐ray diffraction analysis. Compound 1 has a 3D framework containing Zn–O–C–O–Zn 1D chains. Compound 2 exhibits a 3D framework, which features tubular channels. The channels are occupied by bpe molecules. The differences in the structures demonstrate that the auxiliary dipyridyl‐containing ligand has a significant effect on the construction of the final framework. Additionally, the fluorescent properties of the two compounds were also studied in the solid state at room temperature.  相似文献   

12.
{[Cu2(L‐val)2(4,4′‐bipy)(H2O)2](NO3)2}n was synthesized and its crystal structure was determined by X‐ray diffraction. In the presence of 4,4′‐bipyridine, deprotoned L‐valine chelates CuII ions into coordination layers which were linked into a framework by hydrogen‐bonded chains resulting from nitrate anions and water molecules.  相似文献   

13.
Two new CdII complexes, [Cd( ces )(phen)] ( 1 ) and {[Cd( ces )(bpy)(H2O)](H2O)}2 ( 2 ), were prepared by slow solvent evaporation methods from mixtures of cis‐epoxysuccinic acid and Cd(ClO4)2 · 6H2O in the presence of phen or bpy co‐ligand ( ces = cis‐epoxysuccinate, phen = 1,10‐phenanthroline, and bpy = 2,2′‐bipyridine). Single‐crystal X‐ray diffraction analyses show that complex 1 has a one‐dimensional (1D) helical chain that is further assembled into a two‐dimensional (2D) sheet, and then an overall three‐dimensional (3D) network by the interchain C–H ··· O hydrogen bonds. Complex 2 features a dinuclear structure, which is further interlinked into a 3D supramolecular network by the co‐effects of intermolecular C–H ··· O and C–H ··· π hydrogen bonds as well as π ··· π stacking interactions. The structural differences between 1 and 2 are attributable to the intervention of different 2,2′‐bipyridyl‐like co‐ligands. Moreover, 1 and 2 exhibit intense solid‐state luminescence at room temperature, which mainly originates from the intraligand π→π* transitions of aromatic co‐ligands.  相似文献   

14.
The crystal structure of the title compound, {[Tm(C8H3O7S)(H2O)5]·1.5C10H8N2·0.5H2O}n, is built up from two [Tm(SIP)(H2O)5] molecules (SIP3− is 5‐sulfonatobenzene‐1,3‐dicarboxylate), three 4,4′‐bipyridyl (bpy) molecules and one solvent water molecule. One of the bpy molecules and the solvent water molecule are located on an inversion centre and a twofold rotation axis, respectively. The TmIII ion coordination is composed of four carboxylate O atoms from two trianionic SIP3− ligands and five coordinated water molecules. The Tm3+ ions are linked by the SIP3− ligands to form a one‐dimensional zigzag chain propagating along the c axis. The chains are linked by interchain O—H...O hydrogen bonds to generate a two‐dimensional layered structure. The bpy molecules are not involved in coordination but are linked by O—H...N hydrogen bonds to form two‐dimensional layers. The two‐dimensional layers are further bridged by the bpy molecules as pillars and the solvent water molecules through hydrogen bonds, giving a three‐dimensional supramolecular structure. π–π stacking interactions between the parallel aromatic rings, arranged in an offset fashion with a face‐to‐face distance of 3.566 (1) Å, are observed in the crystal packing.  相似文献   

15.
A novel mixed‐ligand complex {[Mn(azpy)2(dca)(H2O)2](ClO4)(azpy)(H2O)2}n ( 1 ) has been synthesized and characterized by single crystal X‐ray analysis, elemental analysis, IR spectroscopy and variable temperature magnetic measurement. The 4,4′‐azopyridine and dicyanamide ligands are abbreviated as azpy and dca, respectively. The crystal structure of 1 revealed that the 1D covalent bonding chains constructed by μ1,5‐dca bridging the MnII ions are linked together via O–H···N and O–H···O hydrogen bonds and ππ stacking interactions into a 3D supramolecular structure. V‐shape (bent) water trimers were also found in the structure. The water clusters play an important role in the formation of the 3D supramolecular structure. The determination of the variable temperature magnetic susceptibilities (2–300 K) shows the existence of a very weak antiferromagnetic interaction with a J value of ?0.16 cm?1.  相似文献   

16.
Rare‐Earth‐Metal Coordination Polymers: Syntheses and Crystal Structures of Six New Pimelinates, [M(Pim)(PimH)(H2O)](H2O) (M = Ce, Pr) and [M2(Pim)3(H2O)4] (M = Tb, Ho, Er, Tm) The new rare‐earth metal carboxylates [M(Pim)(PimH)(H2O)](H2O) (M = Ce ( 1 ), Pr ( 2 )) and [M2(Pim)3(H2O)4] (M = Tb ( 3 ), Ho ( 4 ), Er ( 5 ), Tm ( 6 )) were prepared from the reaction of pimelinic acid with CeO2, Pr6O11, Tb4O7, HoCl3, ErCl3 and Tm(NO3)3, respectively. Their crystal structures were determined by single‐crystal X‐ray diffraction. [M(Pim)(PimH)(H2O)](H2O) crystallize in the monoclinic space group P21/n (no. 14) with a = 909.6(1), b = 870.6(1), c = 2240.5(2) pm, β = 92.30(1)°, Z = 4 (crystal data for M = Ce). The isostructural pimelinate‐hydrates [M2(Pim)3(H2O)4] crystallize with orthorhombic symmetry, Pbcn (no. 60), with a = 1392.5(1), b = 902.3(1), c = 2408.8(2) pm, Z = 4 (crystal data for M = Tb). The rare‐earth cations have coordination numbers of 10 ( 1 , 2 ) and 9 ( 3 , 4 , 5 and 6 ), respectively. In the crystal structure of [M(Pim)(PimH)(H2O)](H2O) bidentate and tridentate‐bridging carboxylate groups form rather dense structures in which chains are bridged to layers and further to networks. Pimelinic acid molecules fill the channels. In [M2(Pim)3(H2O)4] tridentate‐bridging carboxylate groups coordinating to two rare‐earth ions lead to dimers that are linked with other dimers to strands. The channels thus formed between the strands are rather small in diameter. They do not contain any non‐coordinated water molecules.  相似文献   

17.
Rare‐Earth‐Metal Coordination Polymers: Synthesis and Crystal Structures of Five New Adipinates, [M2(Adi)3(H2O)4](AdiH2)(H2O)4 (M = La, Nd), [Er(Adi)(H2O)5]Cl(H2O) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd, Er) The new rare‐earth compounds [M2(Adi)3(H2O)4](AdiH2)(H2O)4 (M = La ( 1 ), Nd ( 2 )), [Er(Adi)(H2O)5]Cl(H2O) ( 3 ) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd ( 4 ), Er ( 5 )) were obtained from the reaction of adipinic acid with La(OH)3·xH2O, Nd2O3, ErCl3·6H2O, Gd(NO)3·xH2O and Er2O3, respectively. Their crystal structures were determined by single‐crystal X‐ray diffraction. The coordination polymers [M2(Adi)3(H2O)4](AdiH2)(H2O)4 crystallize in the triclinic space group (no. 2) with a = 875.4(1), b = 1000.4(2), c = 1179.0(2) pm, α = 74.70(1), β = 69.85(1), γ = 86.18(2)° and Z = 1 (crystal data for M = La, ( 1 )). The quasi‐isostructural compounds [Er(Adi)(H2O)5]Cl(H2O) ( 3 ) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd ( 4 ), Er ( 5 )) crystallize with monoclinic symmetry, space group C2/c (no. 15) with lattice parameters of a = 1231.5(1), b = 1532.6(1), c = 895.4(1) pm, β = 123.44(1)° and Z = 4 (crystal data for ( 3 )). The rare‐earth cations have the coordination numbers 10 ( 1 , 2 ) and 9 ( 3 , 4 and 5 ), respectively. The compounds [M2(Adi)3(H2O)4](AdiH2)(H2O)4 are constructed of infinite chains of edge‐sharig [MO8(H2O)2] polyhedra that are cross‐linked by adipinic acid molecules to form framework structures. In [Er(Adi)(H2O)5]Cl(H2O) ( 3 ) and [M(Adi)(H2O)5](NO3)(H2O) (M = Gd ( 4 ), Er ( 5 )) the central cations are bridged by adipinic acid molecules in a bidentate‐chelating manner to positively charged zigzag chains. Between these the counter ions and crystal water molecules are incorporated.  相似文献   

18.
A novel La( III )‐Cu( II ) heterometallic coordination polymer {[LaCu2(NTA)2(4,4′‐bpy)(H2O)3]NO3·5H2O]n, where H3NTA denotes nitrilotriacetic acid and 4,4′‐bpy denotes 4, 4‐bipyridine, was synthesized and characterized by IR spectrum, elemental analysis and X‐ray diffraction. The complex crystallizes in the triclinic space group Pi with cell parameters a = 1.33710(10) nm, b = 1,44530(10) nm, c =1.0949(2) nm, α = 71.905(7)°, β = 74.327(7)°, γ = 64.427(9)°, V = 1.7912(4) nm3and Z = 2. It consists of heterometallic units, in which each La( II ) ion is coordinated in a distorted monocapped square antiprism by three oxygen atoms from water molecules and six carboxyl oxygen atoms from five NTA3? ions, and each Cu( I ) ion is coordinated by one nitrogen atom from 4,4′‐bpy and one nitrogen atom, three oxygen atoms from NTA3?. In the title complex, La( I ) ions and Cu( II ) ions are connected by the heterometallic bridging of NTA3?, constructing a two‐dimensional network structure along the [110]. And it is extended into an infinite three‐dimensional network structure by the formation of homometallic bridging of Cu‐4, 4′‐bpy‐Cu, exhibiting a certain inclusion ability.  相似文献   

19.
Two new nickel(II) complexes, [Ni(4, 4′‐bpy)(H2O)4]n · n(cpp) · 0.5nH2O ( 1 ) and [Ni(cpp)(4, 4′‐bpy)(H2O)2]n ( 2 ) [4, 4′‐bpy = 4, 4′‐bipyridine, H2cpp = 3‐(4‐carboxyphenyl)propionic acid] were synthesized and characterized by single‐crystal X‐ray diffraction, elemental analysis, IR spectroscopy, and thermal analysis. In complex 1 , NiII ions are bridged by 4, 4′‐bpy into 1D chains, and cpp ligands are not involved in the coordination, whereas in complex 2 , cpp ligands adopt a bis(monodentate) mode and link NiII ions into 2D (4, 4) grids with the help of 4, 4′‐bpy ligands. Triple interpenetration occurs, which results in the formation of a complicated 3D network. The difference in the structures of the two complexes can be attributed to the different reaction temperatures and bases.  相似文献   

20.
The X‐ray crystallographic studies are reported for a water‐soluble sodium complex of organic acid, {[Na(NSNDC)(H2O)2]·H2O}n, (NSNDC = 7‐Nitro‐5‐sulfonate‐napthalene‐1,4‐dicarboxy‐acid). It contains layers of vertically oriented NNSDC‐anions sandwiching cations and water molecules. The rows of anions are linked in a direction by sodium ions and along b by hydrogen bonding, which have microporous channels (9.410 × 3.210Å2) along the crystallographic b‐axis. Considering the Na coordination environments, π‐π stacking interaction between aryl ring and hydrogen bonds, the title compound represents a stably 2D infinitely extended structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号