首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Linear polystyrene chains were grown from the convex surface of two commercially available multiwall carbon nanotubes (MWCNTs) with similar diameter but different lengths. The MWCNTs were supplied from Bayer Material Science® (purity >95%, external diameter = 13–16 nm, length = 1–10 μm, denoted MWCNTBMS95) and FutureCarbon GmbH (purity >99%, external diameter = 15 nm, length = 5–50 μm, denoted MWCNTFC99). The MWCNTs were oxidized with nitric acid, consecutively reacted with thionyl chloride, glycol or poly(ethylene glycol), 2‐bromo‐2‐methylpropionyl bromide and finally with styrene under atom transfer radical polymerization (ATRP) conditions. The content of polystyrene grafted from the surface of the MWCNTs can be controlled by adjusting the molecular weight of the poly(ethylene glycol), the initiator concentration and the monomer to carbon nanotube weight ratio. Under comparable experimental conditions, a higher amount of polystyrene is grafted from the MWCNTBMS95 than from MWCNTFC99. The difference in dimensions and the state of aggregation of the carbon nanotubes influence the grafting from polymerization reactions, where relative shorter and tightly aggregated carbon nanotubes promote higher polymerizations yields than longer and less aggregated carbon nanotubes. The increase of the viscosity of the carbon nanotube dispersion decreases the polymer grafting content. © 2010 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48: 1035–1046, 2010  相似文献   

2.
Raman spectral shifts of single‐wall carbon nanotubes embedded in polymer systems were used to measure transitions in polymers. Glass‐transition temperatures and secondary transitions were observed, and Raman spectroscopic data were compared with dynamic mechanical tests for a thermosetting and a thermoplastic polymer. The data confirm that the Raman spectral response of carbon nanotubes embedded in polymers is sensitive to polymer transitions. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 39: 1492–1495, 2001  相似文献   

3.
The higher surface area of selectively grown multiwall carbon nanotubes (MWCNTs) and the better proximity of the reactant species in in situ microemulsion polymerization were used to attach the polystyrene (PS) nanoparticles to the outer wall of MWCNTs. Attachment were achieved by replacing surfactant with PS nanoparticles. SEM showed that the MWCNTs and PS nanoparticles were distributed in the composite. High resolution transmission electron microscopy showed successful anchoring of PS nanoparticles to the outer wall of the MWCNTs. In addition, anchoring enhanced the Raman's G/D ratio of the MWCNT and degradation temperature in PS nanoparticles. A mechanism of attachment of PS nanoparticles on the outer wall of MWCNT was proposed. The modified MWCNTs exhibited good durability and dispersability in different organic solvents. © 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 47: 1523–1529, 2009  相似文献   

4.
A single carbon nanotube has many similarities with an individual polymer chain including the fact that the end‐to‐end length of both are often about the same and the diameter of the chain is about the same (for single‐walled nanotubes) or only ~10 to 20 times larger (for multiwalled nanotubes). The combination of the solid surface and the similarity of the two materials means that polymer physics are altered in manners not seen with any other type of commonly used filler. The purpose of this review is to update a chapter that appears in a recent tome by Grady (2011) and describe how polymer physics is altered in composites that contain carbon nanotubes. Subjects that will be discussed include chain configuration, glass transition, polymer diffusion, unit cells and crystalline superstructure (lamellae, spherulites and shish‐kebabs), and crystallization kinetics. © 2012 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys, 2012  相似文献   

5.
Multi-walled carbon nanotubes (MWNTs) reinforced polyimide nanocomposites were synthesized by in situ polymerization using 4,4′-oxydianilline, MWNTs, and pyromellitic dianhydride followed by casting, evaporation and thermal imidization. A homogeneous dispersion of chemically modified MWNTs was achieved in polyimide matrix as evidenced by scanning electron microscopy and atomic force microscopy. The incorporation of the modified MWNTs enhanced the mechanical properties of the polyimide due to the presence of strong interfacial interaction between the polymer matrix and the nanotubes in polymer composites. The resultant polyimide/MWNTs nanocomposites were electrically conductive with significant conductivity enhancement at 3 wt% MWNTs, which is favorable for many practical uses.  相似文献   

6.
An amphoteric copolymer brush of methacrylic acid (MA) and 2-(dimethylamino)ethyl methacrylate (DMAEMA) was prepared by reversible addition-fragmentation chain-transfer (RAFT) polymerization using both a free chain transfer agent (n-butylsulfanylthiocarbonylsulfanyl-2-methyl propionic acid) and a radical initiator (4,4'-azobis(4-cyanopentanoic acid)) covalently fixed to a glass substrate. An aqueous solution of the copolymer, Poly(MA-r-DMAEMA), which was simultaneously obtained in liquid phase, had a sufficiently small polydispersity in its molecular weight. The copolymer brush showed effective suppression of non-specific adsorption of bovine serum albumin and egg white lysozyme to the brush. In contrast, both negatively charged PolyMA and positively charged PolyDMAEMA brushes significantly adsorbed the proteins irrespective of their net charges. Upon ion beam irradiation, furthermore, a hollow space with a designed shape could be made on the glass substrate, and both HEK293 and HepG2 cells non-specifically adhered to the space, forming aggregates, while no adhesion to the non-treated area on the brush was observed. These results suggest that the amphoteric polymer brushes will be useful materials for biomedical applications.  相似文献   

7.
Multiwalled carbon nanotubes (MWCNT) were grafted with polystyrene by in situ nitroxide mediated radical polymerization in the presence of TEMPO (2,2,6,6-tetramethylpiperidinyl-1-oxyl) functionalized MWCNT, which was synthesized by the reaction between 4-hydroxyl-TEMPO (HO-TEMPO) and carbonyl chloride groups on the MWCNT. Although the controllability of the polymerization was not high, highly soluble grafted MWCNTs were indeed obtained, indicating that the graft polymerization was efficient. The resulting polystyrene grafted MWCNTs were easily defunctionalized at room temperature using 3-chloroperoxybenzioc acid. TEM, SEM, and TGA were employed to determine the structure, morphology, and the grafting quantities of the resulting products.  相似文献   

8.
Sha Y  Qian L  Ma Y  Bai H  Yang X 《Talanta》2006,70(3):556-560
Multilayer films containing multiwall carbon nanotubes and redox polymer were successfully fabricated on a screen-printed carbon electrode using layer-by-layer (LBL) assembled method. UV-vis spectroscopy, X-ray photoelectron spectroscopy, field-emission scanning electron microscopy and electrochemical method were used to characterize the assembled multilayer films. The multilayer films modified electrodes exhibited good electrocatalytic activity towards the oxidation of ascorbic acid (AA). Compared with the bare electrode, the oxidation peak potential negatively shifted about 350 mV (versus Ag/AgCl). Furthermore, the modified screen-printed carbon electrodes (SPCEs) could be used for the determination of ascorbic acid in real samples.  相似文献   

9.
溶剂热合成碳纳米管   总被引:1,自引:0,他引:1  
自1991年Iijima发现碳纳米管以来,碳纳米管因其独特的结构和物理化学性质而成为人们的研究热点。  相似文献   

10.
We report a simple and noncovalent method for coating multiwalled carbon nanotubes (MWCNTs) with polyaniline (PANI) nanospheres using a microemulsion polymerization method. In this method, aniline polymerization is performed with MWCNTs in the presence of sodium dodecyl sulfate (SDS), which serves as both a surfactant and a dopant. Morphological, structural, thermal, and electrical properties of MWCNT–PANI nanocomposites were analyzed. The TEM results of the nanocomposites prepared with surfactant reveal that 30–50-nm-diameter PANI nanospheres were coated on the surface of the MWCNTs. Composites prepared without surfactant were found to be in core–sheath-type cable structures. The conductivities of the nanocomposites synthesized through microemulsion polymerization were found to be one order of magnitude higher than both the conductivities of pure PANI and the composites prepared via in situ chemical polymerization without an assisting SDS surfactant. The mechanism for the formation of nanostructured composites is presented.  相似文献   

11.
Multiwall carbon nanotubes (MWNTs) and alumina are combined to give a new type of nanohybrid for Fisher-Tropsch synthesis (FTS) catalyst support. Alumina nano-particles (10 wt%) were introduced directly on functionalized MWNTs by a modified sol-gel method. Microstructure observations show that alumina particles were homogeneously dispersed on the inside and outside of modified MWNTs surfaces. 15 wt% cobalt loading catalysts were prepared with this nanohybrid and γ-alumina as a reference, using a sol-gel technique and wet impregnation method respectively. These catalysts were characterized by TEM, XRD, N2-adsorption, H2 chemisorption and TPR. The deposition of cobalt nanoparticles synthesized by sol-gel technique on the MWNTs nanohybrid shift the reduction peaks to a low temperature, indicating higher reducibility for uniform cobalt particles. Nanohybrid also aided in high dispersion of metal clusters and high stability and performance of catalyst. The proposed MWNTs nanohybrid-supported cobalt catalysts showed the improved FTS rate (gHC/(gcat·min)), CO conversion (%), and water gas shift rate (WGS)(gCO2/(gcat·h)) of 0.012, 52, and 30E-3, respectively, as compared to those of 0.007, 25, and 18E-3, respectively, on the γ-alumina-supported cobalt catalysts with the same Co loading.  相似文献   

12.
Multiwalled carbon nanotubes (MWNTs) were effectively functionalized with KMnO4 in the presence of a phase‐transfer catalyst at room temperature. The hydroxyl functionalized MWNTs were reacted with a vinyl‐group carrying silane‐coupling agent and the terminal vinyl groups were used to fabricate polystyrene (PS) brushes by solution polymerization. Finally, PS‐encapsulated MWNTs were obtained. The synthesis results were verified from FT‐Raman, thermal gravimetric analysis, energy dispersive X‐ray analysis, and transmission electron microscope. PS‐encapsulated MWNTs had much improved dispersion stability in hydrophobic medium, toluene since grafted hydrophobic PS interacts with media and has improved compatibility. This functionalization technique would provide a facile route to prepare various polymer brushes on the surface of MWNTs to improve the dispersion of MWNTs for potential applications. © 2007 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 45: 4413–4420, 2007  相似文献   

13.
崔树勋 《高分子科学》2017,35(7):857-865
A novel environment-friendly system is proposed tofabricate polymer brush, which has the advantages including non-toxic and inexpensive initiator(eosin Y), visible-light exposure(λ= 515 nm), water medium and ambient environment. The experimental results from UV-Vis spectroscopy, AFM-based single molecule force spectroscopy(SMFS) and other measurements indicate thata polymer brush with a living nature is fabricated via free radical polymerization. This polymer brush may find applications incoatings, bio-interfaces and so forth.  相似文献   

14.
The nonisothermal crystallization of multiwall carbon nanotube (MWNT)/isotactic polypropylene (iPP) nanocomposites was investigated. The results derived from the differential scanning calorimetry curves (onset temperature, melting point, supercooling, peak temperature, half‐time of crystallization, and enthalpy of crystallization) were compared with those of neat iPP. The data were also processed according to Ozawa's theory and Dobreva's approach. These results and X‐ray diffraction data showed that the MWNTs acted as α‐nucleating agents in iPP. Accordingly, MWNT/iPP was significantly different from neat iPP: A fibrillar morphology was observed instead of the usual spherulites. © 2003 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 41: 520–527, 2003  相似文献   

15.
A simple, scalable procedure that does not require covalent modification of the filler or specialized high shear mixers is described for preparing well‐dispersed carbon nanotube composites. Excellent particle dispersions of multiple‐walled carbon nanotubes (NTs) and carbon black (CB) in polystyrene (PS) are obtained by coating the particles with a <2‐nm layer of PS adsorbed from dilute solution, prior to incorporation in the composite. Improved mechanical properties of composites containing coated particles, especially NT, are demonstrated by dynamic mechanical analysis at low frequency and low amplitude. Formation of a partially immobilized region of polymer surrounding the particles is quantified using flow microcalorimetry with ethyl acetate or methyl ethyl ketone vapor to measure the increase in solvation enthalpy in this region. This calorimetric method is applied to both composites and compacted powder mixtures of NT or CB with PS. The response of integral heat of vapor sorption as a function of particle loading in powder mixtures is similar to percolation curves reported for mechanical and electrical properties of composites. © 2006 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 44: 1821–1834, 2006  相似文献   

16.
Conducting polythiophene (PTh)/single‐wall carbon nanotubes (SWNTs) composites were synthesized by the in situ chemical oxidative polymerization method. The resulting cablelike morphology of the composite (SWNT–PTh) structures was characterized with elemental analysis, X‐ray photoelectron spectroscopy, Raman spectroscopy, Fourier transform infrared, ultraviolet–visible spectroscopy, field emission scanning electron microscopy, thermogravimetric analysis, X‐ray diffraction, and transmission electron microscopy. The standard four‐point‐probe method was used to measure the conductivity of the samples. Field emission scanning electron microscopy and transmission electron microscopy analysis revealed that the SWNT–PTh composites were core (SWNTs) and shell (PTh) hybrid structures. Spectroscopic analysis data for the composites were almost identical to those for PTh, supporting the idea that SWNTs served as templates in the formation of a coaxial nanostructure for the composites. The physical properties of the composites were measured and also showed that the SWNTs were modified by conducting PTh with an enhancement of various properties. © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 5283–5290, 2006  相似文献   

17.
A new soluble multiwalled carbon nanotubes (MWNTs) covalently functionalized with conjugated polymer PCBF, in which the wt % of MWNTs is approximately calculated as 7.3%, and the average thickness of PCBF covalently grafted onto MWNTs is 10.4 nm, was synthesized by an amidation reaction. In contrast to the starting polymer PCBF‐NH2, grafting of PCBF onto MWNTs led to a 0.3 eV red‐shift of the N1s XPS peak at 399.7 eV assigning to N in the unreacted NH2moieties in the resulting copolymer structure and an appearance of new peak at 402 eV corresponding to N bound to the carbonyl C (i.e., NH? C?O). Unlike PCBF‐NH2, which only displayed a weak optical limiting response at 532 nm, Z‐scan for MWNT‐PCBF exhibited a much broader reduction in transmission and a scattering accompanying on the focus of the lens at both 532 and 1064 nm, indicating a prominent broadband optical limiting response. The thermally induced nonlinear scattering is responsible for the optical limiting. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

18.
A novel nonoxidative method for preparation of functionalized multiwalled carbon nanotubes (MWCNT) has been developed based on a UV sensitive initiator for atom transfer radical polymerization (ATRP). The method has been investigated with respect to ligands and polymerization time for the preparation of polystyrene functionalized MWCNT. It was found that pentamethyldiethylenetriamine (PMDETA) gave superior results with higher loading in shorter polymerization time. A comparative study of the method applied on two different grades of nonoxidized MWCNT has been performed, illustrating large differences in reactivity and polymer loading, underlining the importance of the choice of MWCNT starting material. In addition to styrene, also poly(ethylene glycol) methacrylate (PEGMA) was shown to polymerize from the surface of the MWCNT. Finally, initial results from composites of polystyrene or polyphenylenesulfide are presented. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

19.
A glassy-carbon electrode modified with a thin film of multiwall carbon nanotubes is used for the determination of nicotinic acid (NA). At the electrode, the latter yields a well-defined and very sensitive oxidation peak at 0.21 V (SCE). Investigation of the electrochemical behavior of NA shows that the electrode significantly enhances the NA oxidation peak current, compared with the non-modified electrode. Based on this, a very sensitive and simple electrochemical method is proposed for the NA determination after the optimization of all experimental parameters. The oxidation peak current is proportional to the NA concentration over the range 2×10−7 to 4×10−5 M, and the detection limit is 8×10−8 M after a 4-min accumulation. The relative standard deviation of 5.4% for the successive determination of 1×10−6 MNA (n=10) indicates excellent reproducibility. The analysis method is successfully demonstrated using tablet samples. Published in Russian in Elektrokhimiya, 2006, Vol. 42, No. 2, pp. 190–195. The text was submitted by the author in English.  相似文献   

20.
A novel method for the synthesis of polyacrylonitrile (PAN)‐coated multiwall carbon nanotubes (MWCNTs) via a simple soap‐free emulsion polymerization is presented for the first time. The polymerization was initiated with conventional anionic ammonium persulfate (APS) at 65 °C. The modification of PAN on MWCNT surfaces was confirmed by Fourier‐transform infrared (FT‐IR) spectroscopy, X‐ray photoelectron spectra (XPS), transmission electron microscopy (TEM), field emission scanning electron microscopy (FESEM), and Raman spectroscopy. It is found that all the surfaces of the MWCNTs were coated by PAN chains, and the PAN coating thickness could be controlled by simply adjusting the polymerization time. The obtained PAN‐coated MWCNTs could be well dispersed in water. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 48: 2057–2062, 2010  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号