首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The geometric, energetic, and spectroscopic properties of the ground state and the lowest four singlet excited states of pyrazine have been studied by using DFT/TD‐DFT, CASSCF, CASPT2, and related quantum chemical calculations. The second singlet nπ* state, 1Au, which is conventionally regarded dark due to the dipole‐forbidden 1Au1Ag transition, has been investigated in detail. Our new simulation has shown that the state could be visible in the absorption spectrum by intensity borrowing from neighboring nπ* 1B3u and ππ* 1B2u states through vibronic coupling. The scans on potential‐energy surfaces further indicated that the 1Au state intersects with the 1B2u states near the equilibrium of the latter, thus implying its participation in the ultrafast relaxation process.  相似文献   

2.
In this work, we present a complete structural and vibrational analysis of the OH torsional motion in difluorohydroxyborane (BF2OH) at the HF/aug‐cc‐pVTZ, MP2(full)/aug‐cc‐pVTZ, and CCSD/aug‐cc‐pVTZ theory levels. After full relaxation of the geometry, the equilibrium structure is found in a planar conformation of Cs symmetry. The difference in the two BF distances suggests the existence of a nonbonded interaction between the fluorine and oxygen atoms. The structural and energetic variation of BF2OH as a function of the OH torsional angle is considered. The torsional barrier, at the CCSD/aug‐cc‐pVTZ level, and including the effect of the zero‐point energy of the remaining vibrations, is found 2,728 cm?1. In addition, an anharmonic Hamiltonian for the OH torsional mode is presented and variationally solved. To simplify the treatment and to classify the energy levels, BF2OH is classified under a G4 nonrigid group accounting for the inversion symmetry of the molecule and the interchange of the fluorine atoms. The computed torsional energy levels exhibit a very small inversion splitting. The torsional spectrum is simulated considering the dipole moment components along the principal axes of inertia as an explicit function of the torsional coordinate. We observe three dominant bands in the spectrum formed by doublets corresponding to ν9 = 0 → 1, 2 transitions. The fundamental is an a‐type, Franck–Condon, transition. This is the strongest and appears at 466.80 cm?1 with relative intensity 0.4312. The ν9 = 0 → 2 bands correspond to doublets of b‐ and c‐type, i.e., Herzberg–Teller transitions. These are two overlapping bands found at 890.92 and 890.94 cm?1 with intensity 0.2207 for the b‐type band and 0.2193 for the c‐type band. © 2011 Wiley Periodicals, Inc. Int J Quantum Chem, 2011  相似文献   

3.
The two-photon excitation (TPE) of benzene fluorescence in the vapor phase at 60 torr is reported for the total-energy region from 38 086 cm?1 to 42 441 cm?1 using both circular and linear polarized light from a nitrogen-pumped dye-laser. The theory of the polarization dependence of the vibronic transitions in benzene is briefly reviewed, and it is seen how transitions involving vibrations of b1u symmetry are expressly forbidden for this type of TPE experiment in which the two photons are identical. Five vibronic origins with distinctive rotational contours and polarization dependence are identified in the TPE spectrum. The υ14(b2u) vibronic origin at 1570 cm?1 (above the electronic origin of the IB2u state) stands out very prominently in the linear polarized spectrum, but nearly disappears in the circular polarized spectrum. This striking polarization dependence indicates a significant contribution of A2u electronic states to the intermediate states of this TPE vibronic transition. The relatively great strength of the υ14 band may be due to vibronic borrowing by the b2u mode from the ground electronic state (A1g).  相似文献   

4.
The HBeN? and HNBe? anions have been investigated for the first time using the CASSCF, CASPT2, and DFT/B3LYP methods with the contracted atomic natural orbital (ANO) and cc‐pVTZ basis sets. The geometries of all stationary points along the potential energy surfaces were optimized at the CASSCF/ANO and B3LYP/cc‐pVTZ levels. The ground and the first excited states of HBeN? are predicted to be X2Π and A2Σ+ states, respectively. It was predicted that the ground state of HNBe? is X2Σ+ state. The A2Π state of HNBe? has unique imaginary frequency. A bend local minimum M1 was found along the 12A″ potential energy surface and the A2Π state of HNBe? should be the transition state of the isomerization reactions for M1 ? M1. The CASPT2/ANO potential energy curves of isomerization reactions were calculated as a function of HBeN bond angle. © 2009 Wiley Periodicals, Inc. Int J Quantum Chem, 2010  相似文献   

5.
Complete active space self‐consistent field (CASSCF) and complete active space second‐order perturbation theory (CASPT2) calculations in conjunction with the aug‐cc‐pVTZ basis set have been used to investigate the low‐lying electronic states of thiofulminic acid (HCNS), HCNS+, and HCNS?. The result of geometry optimization using CASPT2/aug‐cc‐pVTZ shows that theoretically determined geometric parameters and harmonic vibrational frequencies for the HCNS ground state X1Σ+(X1A′) are in agreement with previous studies. The ionization energies, the electron affinity energies, the adiabatic excitation energies, and vertical excitation energies have been calculated and the corresponding cation and anion states are identified. By calculating adiabatic electron affinity, the states of HCNS? have been identified to contain both π orbital states (X2A′ and 12A″) and dipole‐bond states (14A′ and 14A″). © 2012 Wiley Periodicals, Inc.  相似文献   

6.
The HBC? and HCB? anions have been studied using the complete active space self‐consistent field, CASPT2, and DFT/B3LYP methods with the contracted atomic natural orbital (ANO) and cc‐pVTZ basis sets. The geometries of all stationary points along the potential energy surfaces were optimized at the CASSCF/ANO and B3LYP/cc‐pVTZ levels. The ground state of HBC? is predicted to be X2? state, which is different from the previously published results. The CASPT2/ANO potential energy curves (PECs) of isomerization reactions were calculated as a function of HBC bond angle and the PECs also show the 2? state is the ground state of HBC? anion. © 2008 Wiley Periodicals, Inc. Int J Quantum Chem, 2009  相似文献   

7.
A CNDO/S Cl calculation of the two-photon vibronic activity of some b1u and b2u vibrational modes of pyrene is presented. The two-photon amplitude tensor is discussed in terms of vibronic coupling coefficients calculated by means of the orbital-following method. The results are in good agreement with the experimental data taken from a recently observed two-photon spectrum of pyrene in a Shpolskii matrix. The role of the ground-state coupling with the first excited B1u state has been investigated and is shown to be responsible for most of the vibronically induced two-photon intensity of the spectrum. The calculations also show that the 1310 cm?1 (b1u; observed ground-state value) mode is associated with the largest vibronic coupling coefficients and the strongest two-photon amplitude tensor and therefore must be correlated with the most intense B1u X b1u false origin ≈ 1496 cm?1 from the pure (0-0) line.  相似文献   

8.
The two-photon absorption spectra at ~ 5 cm?1 resolution are presented for the naphthalene crystal and naphthalene in durene at 2°K in polarized light. A rich vibronic spectrum of the 1B2u(3200 Å) naphthalene state is observed and some of the strongest vibronic origins are from in-plane vibrations.  相似文献   

9.
The potential energy curves (PECs) of eight low‐lying electronic states (X1Σ+, a3Π, a′3Σ+, d3Δ, e3Σ?, A1Π, I1Σ?, and D1Δ) of the carbon monoxide molecule have been studied by an ab initio quantum chemical method. The calculations have been performed using the complete active space self‐consistent field method, which is followed by the valence internally contracted multireference configuration interaction (MRCI) approach in combination with the correlation‐consistent aug‐cc‐pV5Z basis set. The effects on the PECs by the core‐valence correlation and relativistic corrections are included. The way to consider the relativistic corrections is to use the third‐order Douglas–Kroll Hamiltonian approximation at the level of a cc‐pV5Z basis set. Core‐valence correlation corrections are performed using the cc‐pCVQZ basis set. To obtain more reliable results, the PECs determined by the MRCI calculations are corrected for size‐extensivity errors by means of the Davidson modification (MRCI+Q). The spectroscopic parameters (De, Te, Re, ωe, ωexe, ωeye, Be, αe, and γe) of these electronic states are calculated using these PECs. The spectroscopic parameters are compared with those reported in the literature. Using the Breit–Pauli operator, the spin–orbit coupling effect on the spectroscopic parameters is discussed for the a3Π electronic state. With the PECs obtained by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations, the complete vibrational states of each electronic state have been determined. The vibrational manifolds have been calculated for each vibrational state of each electronic state. The vibrational level G(ν), inertial rotation constant Bν, and centrifugal distortion constant Dν of the first 20 vibrational states when the rotational quantum number J equals zero are reported and compared with the experimental data. Comparison with the measurements demonstrates that the present spectroscopic parameters and molecular constants determined by the MRCI+Q/aug‐cc‐pV5Z+CV+DK calculations are both reliable and accurate. © 2012 Wiley Periodicals, Inc.  相似文献   

10.
The electronic absorption, fluorescence and phosphorescence spectra of s-tetrazine at low temperatures (4.2-1.5 K) are reported and analyzed in the neat crystal and in several mixed crystals. The 3B3u-1Ag (nπ*) origin is at 18414 ± 5 cm?1 for neat tetrazine. In the mixed crystal several sites identified. The lowest energy origin is at 17453 cm?1 for tetrazine in pyrazine; 17 701 cm?1 in pyrimidine; and 17 676 cm?1 in pyridazine. The eB3u-1Ag (nπ*) origin is at 14 096 ± 2 cm?1 for the neat crystal. The phosphorescence lifetime of neat tetrazine is measured to be 96.8 ± 2.1 μs at 4.2 and 1.8 K. All the spectra are predominately composed of members of progressions in a single totally symmetric mode (ν6a) built upon site origins and vibrational fundamentals. The ν6a interval is: 743 (1Ag), 715 (3B3u), and 709 cm?1 (1B3u) in the neat tetrazine crystal; 732 (1Ag) and 705 cm?1 (1B3u in pyrazine host, 737 (1Ag) and 701 cm?1 (1B3u) in pyrimidine host, and 732 (1Ag) and 703 cm?1 (1B3u) in pyridazine host mixed crystals. All emission spectra may be analyzed by Oi → (ν″6a)on (i), i indicating the observed s  相似文献   

11.
A total of 20 singlet and 36 triplet C2Si32‐ isomers are obtained by quantum chemical calculations at the B3LYP/aug‐cc‐pVTZ level.  相似文献   

12.
The excitation wavelength dependences of the intensities of the Raman lines of pyrazine have been measured. The intensity enhancement of the non-totally symmetric Raman line at 925 cm?1 provided firm evidence of the vibronic coupling between the lowest 1B3u(n,π*) and second lowest 1B2u(π,π*) states. The excitation wavelength dependences of other non-totally symmetric Raman lines suggest also the various vibronic coupling schemes.  相似文献   

13.
High resolution absorption and laser induced emission spectra of the lowest B3u(nπ*) singlet state of s-tetrazine-h2 and -d2 in a benzene crystal at 1.8 K are presented and discussed. The absorption spectrum with origin at 17231 cm?1 (h2) is dominated by a progression in ν6a and a Herzberg-Teller origin which has been assigned as ν1. The absence of ν1 in the emission spectrum is explained as being due to a destructive vibronic interference effect. The Franck-Condon envelope of the unique ν6a progression in emission is used for a determination of the excited state structure and the limitations of this procedure are examined. Direct lifetime measurements using a dye laser and single photon counting techniques show the fluorescence lifetime of s-tetrazine-h2 and -d2 to be shorter than 1.5 ns. From a deconvolution of the emission pulse of dimethyl s-tetrazine its fluorescence lifetime in the gas phase is found to be 6.0 ± 0.3 ns. Through a comparison of the fluorescence quantum yield of s-tetrazine-h2 and dimethyl s-tetrazine we calculate for s-tetrazine-h2 a fluorescence lifetime of 1.5 ± 0.2 ns and a fluoresence quantum yield of 1.8 × 10?3. The ratio of the emissive lifetimes of s-tetrazine-d2 and -h2 was measured from relative fluorescence yields and found to be 1.18 ± 0.05. Photodissociation quantum yield studies on s-tetrazine-h2, -d2 and dimethyl for excitation into the origin of the 1B3u(nπ*) state show this yield to be in the range of 1.3 ± 0.3, and this could explain the low fluorescence yields of the s-tetrazines. The fluorescence quantum yields in the gas phase are found to vary among the vibronic levels of the 1B3u state. This finding is in agreement with earlier measurements by Vemulapalli and Cassen, but the report by these authors that such quantum yield variations also occurred in the rovibronic structure is not confirmed.  相似文献   

14.
The two-photon fluorescence excitation spectrum of pyrene in n-hexane and n-heptane matrices has been measured at 10 K in the region of the first electronic transition (26800–30200 cm?1). The spectrum consists of a rich number of sharp bands, being in general better resolved in n-hexane than in n-heptane matrix. Shpol'skii multiplets have been observed for the most intense bands. A strong two-photon band dominates the spectrum = 1495 cm?1 from the 0—0 line and was assigned to B1u × b1u = Ag symmetry. Other weaker vibronic origins occur in the spectrum which were correlated to vibrational modes of b1u, b2u, b3u and au symmetry. Intense vibronic bands are observed close to the origin of the second electronic transition and were interpreted as combination bands of B1u × b1u × b3g symmetry. A two-photon vibronic theory to account for their intensity is proposed where the electronic moment is linearly expanded in powers of the nuclear displacements.  相似文献   

15.
For the first time the argon‐matrix low‐temperature FTIR spectra of β‐alanine are recorded. They reveal a quite complicated spectral pattern which suggests the presence of several β‐alanine conformers in the matrix. To interpret the spectra, the eighteen β‐alanine conformers, stable in the gas phase, are estimated at the B3LYP and MP2 levels combined with the aug‐cc‐pVDZ. Ten low‐energy structures are reoptimized at the QCISD/aug‐cc‐pVDZ and B3LYP and MP2 levels by using the aug‐cc‐pVTZ basis sets. Assignment of the experimental spectra is undertaken on the basis of the calculated B3LYP/aug‐cc‐pVDZ anharmonic IR frequencies as well as careful estimation of the conformer population. The presence of at least three β‐alanine conformers is demonstrated. The detailed analysis of IR spectra points to the possible presence of five additional β‐alanine conformers.  相似文献   

16.
We prepared and isolated a phenalenyl‐based neutral hydrocarbon ( 1 b ) with a biradical index of 14 %, as well as its charge‐transfer (CT) complex 1 b –F4‐TCNQ. The crystal structure and the small HOMO–LUMO gap assessed by electrochemical and optical methods support the singlet‐biradical contribution to the ground state of the neutral 1 b . This biradical character suggests that 1 b has the electronic structure of phenalenyl radicals coupled weakly through an acetylene linker, that is, some independence of the two phenalenyl moieties. The monocationic species 1 b. + was obtained by reaction with the organic electron acceptor F4‐TCNQ. The cationic species has a small disproportionation energy ΔE for the reaction 2× 1 b. +? 1 b + 1 b 2+, which presumably originates from the independence of the phenalenyl moieties. The small ΔE led to a small on‐site Coulombic repulsion Ueff=0.61 eV in the CT complex. Moreover, a very effective orbital overlap of the phenalenyl rings between molecules afforded a relatively large transfer integral t=0.09 eV. The small Ueff/4t ratio (=1.7) resulted in a metallic‐like conductive behavior at around room temperature. Below 280 K, the CT complex showed a transition into a semiconductive state as a result of bond formation between phenalenyl and F4‐TCNQ carbon atoms.  相似文献   

17.
Polarized Stark-modulated Zeeman absorption experiments on p-benzoquinone-d4 single crystals at 2 K show the factor group splitting in the origin of the lowest B1g (nπ*) triplet state at 18649 cm?1 to be 0.62±0.06 cm?1. The ordering of the crystal states is such that the orbital plus state lies at higher energy. The absence of a measurable factor group solitting in the 3Au (nπ*) state at 12.1 cm?1 from the origin is taken as a further confirmation of the vibronic nature of this state. The ZFS parameter D of this level is found to be ?10±3 GHz.  相似文献   

18.
The vibronic nπ* singlet spectra of p-benzoquinone-h4 and p-benzoquinone-d4 have been observed in a supersonic jet and some as yet unknown excited state fundamentals in the vapor phase have been assigned. The electric dipole forbidden, magnetic dipole allowed origin of the 1B1g1Ag transition is observed at 20045 cm?1. The origin of the1Au1Ag, transition has been indirectly determined at 19991 cm?1 from the vibronic excitation spectra. Neither shows a deuterium shift.  相似文献   

19.
The dimethylpolyene deca-2,4,6,8-tetraene was studied by absorption, fluorescence excitation and fluorescence spectroscopy in glasses at 77 K and in n-alkane crystals at 4.2 K. A strong transition to a 1Bu excited state is observed with an origin at 32400 cm?1 in isopentane at 77 K and at 31280 cm?1 in n-undecane at 4.2 K. A weak transition to a 1Ag excited state is observed with an origin at 28738 cm?1 in the n-undecane matrix. The radiative fluorescence lifetime is 500 ns. In undecane the transition from the ground state to the 1Ag excited state exhibits a classic Herzberg—Teller vibronic pattern indicating a symmetry forbidden transition.  相似文献   

20.
We have developed an analytical approach for computing Franck‐Condon integrals (FCIs) of harmonic oscillators (HOs) with arbitrary dimensions in which the mode‐mixing Duschinsky effect is taken into account. A general formula of FCIs of HOs was obtained and was applied to study the photoelectron spectroscopy of vinyl alcohol and ovalene (C32H14). The equilibrium geometries, harmonic vibrational frequencies and normal modes of vinyl alcohol, ovalene, and their cations were computed at the B3LYP/aug‐cc‐pVTZ or the B3LYP/6‐31G(d) level, from which Franck‐Condon factors were calculated and photoelectron spectra were simulated. The adiabatic ionization energies of vinyl alcohol were also computed by extrapolating the CCSD(T) energies to the complete basis set limit with aug‐cc‐pVXZ (X = D, T, Q, 5). The simulated photoelectron spectra of both vinyl alcohol and ovalene are in agreement with the experiments. The computed adiabatic ionization energies of syn‐ and anti‐vinyl alcohol are in consistent with the experiment within 0.008 eV and 0.014 eV, respectively. We show, for the first time, that the analytical approach of computing FCIs is also efficient and promising for the studies of vibronic spectra of macrosystems. © 2012 Wiley Periodicals, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号