首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
We demonstrate that very few (2-4) quantum dots as a gain medium are sufficient to realize a photonic-crystal laser based on a high-quality nanocavity. Photon correlation measurements show a transition from a thermal to a coherent light state proving that lasing action occurs at ultralow thresholds. Observation of lasing is unexpected since the cavity mode is in general not resonant with the discrete quantum dot states and emission at those frequencies is suppressed. In this situation, the quasicontinuous quantum dot states become crucial since they provide an energy-transfer channel into the lasing mode, effectively leading to a self-tuned resonance for the gain medium.  相似文献   

2.
We fabricate photonic crystal slab microcavities embedded with GaAs quantum dots by electron beam lithography and droplet epitaxy. The Purcell effect of exciton emission of the quantum dots is confirmed by the micro photoluminescence measurement. The resonance wavelengths, widths, and polarization are consistent with numerical simulation results.  相似文献   

3.
We have experimentally demonstrated a cation and anion sensor by using short linear photonic crystal microcavities with an embedded quantum dot active region. The photonic crystal microcavity covered with an ion-selective polymer forms a submicrometer optical detection system sensitive to small changes of perchlorate anion (ClO4(-)) and calcium cation (Ca2+) concentrations.  相似文献   

4.
Muller A  Shih CK  Ahn J  Lu D  Deppe DG 《Optics letters》2006,31(4):528-530
Data are presented on a fabrication approach that places an isolated single quantum dot at the center of a semiconductor microcavity. The microcavity is based on an all-epitaxial mesa-confined design that is mechanically robust and provides the thermal dissipation needed for a single photon source device technology. Microphotoluminescence is used to reveal single quantum dot emission with the essential optical properties of single quantum emitters.  相似文献   

5.
Emission spectra of quantum dot arrays in zero-dimensional microcavities are studied theoretically. It is shown that their form is determined by the competition between collective superradiant mode formation and inhomogeneous broadening. A random sources method is used to calculate the photoluminescence spectra from an nonresonant pumped microcavity, and a standard diagram technique is used to provide a microscopic justification for the random sources method. The emission spectra of a microcavity are analyzed taking into account the spread of exciton energy due to inhomogeneous distribution of quantum dots and tunneling between them. It is demonstrated that the luminescence spectra of strongly tunnel-coupled quantum dots are sensitive to the dot positions, and the collective mode can (under certain conditions) be stabilized by random tunneling links.  相似文献   

6.
Microcavity resonance is demonstrated in nanocrystal quantum dot fluorescence in a one-dimensional (1D) chiral photonic bandgap cholesteric-liquid crystal host under cw excitation. The resonance demonstrates coupling between quantum dot fluorescence and the cholesteric microcavity. Observed at a band edge of a photonic stop band, this resonance has circular polarization due to microcavity chirality with 4.9 times intensity enhancement in comparison with polarization of the opposite handedness. The circular-polarization dissymmetry factor g(e) of this resonance is ~1.3. We also demonstrate photon antibunching of a single quantum dot in a similar glassy cholesteric microcavity. These results are important in cholesteric-laser research, in which so far only dyes were used, as well as for room-temperature single-photon source applications.  相似文献   

7.
Slow and fast light processes, based on both structural and material dispersions, are realized in a wide tuning range in this article. Coherent population oscillations(CPO) in electrically tunable quantum dot semiconductor optical amplifiers lead to a variable group index ranging from the background index(nbgd) to ~ 30. A photonic crystal waveguide is then dispersion engineered and a group index of 260 with the normalized delay-bandwidth product(NDBP) of 0.65 is achieved in the proposed waveguide. Using comprehensive numerical simulations, we show that a considerable enhancement of slow light effect can be achieved by combining both the material and the structural dispersions in the proposed active QDPCW structure. We compare our developed FDTD results with analytical results and show that there is good agreement between the results, which demonstrates that the proposed electrically-tunable slow light idea is obtainable in the QDPCW structure.We achieve a total group index in a wide tuning range from nbgdto ~ 1500 at the operation bandwidth, which shows a significant enhancement compared with the schemes based only on material or structural dispersions. The tuning range and also NDBP of the slow light scheme are much larger than those of the electrically tunable CPO process.  相似文献   

8.
The present work investigates the effects of relevant parameters of InAs/GaAs quantum dot and photonic crystal slab-based microcavity on the QD–cavity coupling characteristics, in detail. We employ variational approach to find exciton state in QD and to find cavity modes we use the open source GME code. Calculations have performed in linear regime where excitons behave as bosons which correspond to the limit of low excitation. The dynamics of the system are studied using the first order correlation function (G(1)(t,τ)). We will show how G(1) varies with time in both strong and weak coupling regimes. Our results indicate that the achieving of strong coupling regime is affected by the size of the quantum dot and how to engineer the photonic crystal microcavity to maximize the ratio of quality factor and mode volume.  相似文献   

9.
Yang T  Mock A  O'Brien JD  Lipson S  Deppe DG 《Optics letters》2007,32(9):1153-1155
We report what is, to the best of our knowledge, the first demonstration of an edge-emitting photonic crystal nanocavity laser that is integrated with a photonic crystal waveguide. This demonstration is achieved with a double-heterostructure photonic crystal nanocavity incorporating an InAs quantum dot active region.  相似文献   

10.
A series of microcavities in circular photonic crystal slabs are studied in this paper. It is shown that high quality factors can be obtained for such microcavities. For a cavity with three inner layers of air holes missing, Q factor larger than 105 can be obtained. It is also worth noting there exists resonant modes with high quality factors, even for the defect-free circular photonic crystal slab, due to gradual change of the average effective index.  相似文献   

11.
By numerically integrating the three-dimensional Maxwell equations in the time domain with reference to a dispersive quadratically nonlinear material, we study second-harmonic generation in planar photonic crystal microresonators. The proposed scheme allows efficient coupling of the pump radiation to the defect resonant mode. The outcoupled generated second harmonic is maximized by impedance matching the photonic crystal cavity to the output waveguide.  相似文献   

12.
One-dimensional (1D) photonic crystal (PC) microcavities can be readily embedded into silicon-on-insulator waveguides for photonic integration. Such structures are investigated by 2D Finite-Difference Time-Domain method to identify designs with high transmission which is essential for device integration. On-resonance transmission is found to decrease with the increasing mirror pairs, however, the quality factor (Q) increases to a saturated value. The addition to the Bragg mirrors of tapered periods optimized to produce a cavity mode with a near Gaussian shaped envelope results in a major reduction in vertical loss. Saturated Q up to 2.4 × 106 is feasible if the internal tapers are properly designed. The effect of increasing transmission is also demonstrated in a structure with the external tapers.  相似文献   

13.
We propose the new concept of a switchable multimode microlaser. As a generic, realistic model of a multimode microresonator a system of two coupled defects in a two-dimensional photonic crystal is considered. We demonstrate theoretically that lasing of the cavity into one selected resonator mode can be caused by injecting an appropriate optical pulse at the onset of laser action (injection seeding). Temporal mode-to-mode switching by reseeding the cavity after a short cooldown period is demonstrated by direct numerical solution. A qualitative analytical explanation of the mode switching in terms of the laser bistability is presented.  相似文献   

14.
Hughes S 《Optics letters》2005,30(11):1393-1395
A theoretical quantum-optical study of the modified spontaneous emission dynamics from a single quantum dot in a photonic crystal nanocavity is presented. By use of a photon Green function technique, enhanced single-photon emission and pronounced vacuum Rabi flops are demonstrated, in qualitative agreement with recent experiments.  相似文献   

15.
16.
Di Falco A  Conti C  Assanto G 《Optics letters》2005,30(10):1174-1176
Using a three-dimensional fully vectorial nonlinear time-domain analysis, we numerically investigate generation of terahertz radiation by pumping a photonic crystal microcavity out of resonance. High quality factors and a quadratic susceptibility lead to few-cycle terahertz pulses via optical rectification. Material dispersion as well as linear and nonlinear anisotropy is fully accounted for.  相似文献   

17.
An ultrasensitive two-dimensional photonic crystal biosensor is theoretically demonstrated in this paper. Such device consists of a waveguide and high Q-value microcavities which are realized by introducing line and point defects into the photonic crystal respectively. The band structures and the transmission spectra are obtained from the Finite-Difference –Time-Domain (FDTD) method. The simulation results showed that such device is strongly sensitive to the refractive index of the analyte injected into the point defect. The designed device can be applied for measurements of the refractive index and detection of protein-concentrations.  相似文献   

18.
Kim  B. K.  Chung  Y. 《Laser Physics》2012,22(5):967-971
Laser Physics - We propose a novel multiwavelength erbium-doped fiber laser incorporating a twin-core photonic crystal fiber (TC-PCF) based Mach-Zehnder interferometer (MZI). TC-PCF based...  相似文献   

19.
We observe a room-temperature low-threshold transition to a coherent polariton state in bulk GaN microcavities in the strong-coupling regime. Nonresonant pulsed optical pumping produces rapid thermalization and yields a clear emission threshold of 1 mW, corresponding to an absorbed energy density of 29 microJ cm-2, 1 order of magnitude smaller than the best optically pumped (In,Ga)N quantum-well surface-emitting lasers (VCSELs). Angular and spectrally resolved luminescence show that the polariton emission is beamed in the normal direction with an angular width of +/-5 degrees and spatial size around 5 microm.  相似文献   

20.
We consider excitations that exist, in addition to phonons, in the ideal Bose gas at zero temperature. These excitations are vortex rings whose energy spectrum is similar to the roton one in liquid helium.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号