首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
The coupled cluster singles and doubles method with perturbative treatment of triple excitations is applied to calculate the potentials of M(z)-X complexes (M = Cu, Ag, and Au; X = He, Ne, and Ar; and z = ±1). The bond functions and the basis set superposition errors are considered to obtain accurate interaction energies. The potential energy curves of all complexes are obtained. The vibrational energy levels and the spectroscopic parameters for these complexes are determined. The analytical potential energy functions are also fitted based on the potential energies.  相似文献   

3.
Ca5(PO4)3CuyO y + δ(OH)0.5 ? y ? δX0.5 compounds (for X = OH, y = 0.01–0.3; for X = F, y = 0.01–0.1; for X = Cl, y = 0.1) have been synthesized by heat treatment of oxide-carbonate mixtures at 1150°C in air and have been characterized by X-ray diffraction, electronic spectroscopy, and magnetic measurements. The compounds have an apatite structure in which copper atoms substitute for part of the hydroxyl hydrogen atoms in hexagonal channels. The electronic spectrum shows two main absorption bands due to d-d transitions in copper(II) linearly coordinated to two oxygen atoms, as well as extra, weaker bands, whose contribution to the overall spectrum decreases with decreasing y. The latter are assignable to copper atoms occupying other sites in the crystal lattice. The temperature dependence of the magnetic susceptibility of the compounds obeys the Curie-Weiss law with a Curie constant close to zero. The Weiss constant characterizes the copper(II) content of the compounds and correlates qualitatively with the intensity of the main absorption bands in the visible spectrum. The fraction of copper(II) in the total amount of copper in the apatites increases in the substituent order X: Cl, OH, F, as well as upon the low-temperature annealing of the compounds in air. At the same time, copper(II) fraction depends only slightly on the total copper content. As the copper(II) content increases, the color of apatite changes from pink to dark claret.  相似文献   

4.
Reaction of the pincer hydride complex ((tBu)PCP)Ni(H) [(tBu)PCP = 2,6-C(6)H(3)(CH(2)P(t)Bu(2))(2)] with BH(3)·thf in THF at 190 K generates the corresponding borohydride complex ((tBu)PCP)Ni(BH(4)). The kinetically stable (but thermodynamically unstable) species undergoes reversible borane loss. The related fluoride complex ((tBu)PCP)Ni(F) shows the same reactivity towards BF(3)·Et(2)O, producing ((tBu)PCP)Ni(BF(4)) as the main final product. The processes were followed through multinuclear NMR spectroscopy and DFT calculations, at the M06//6-31+G(d,p) level of theory.  相似文献   

5.
[(Ph3P)3Ru(L)(H)2] (where L=H2 ( 1 ) in the presence of styrene, Ph3P ( 3 ), and N2 ( 4 )) cleave the Ph X bond (X=Cl, Br, I) at RT to give [(Ph3P)3RuH(X)] ( 2 ) and PhH. A combined experimental and DFT study points to [(Ph3P)3Ru(H)2] as the reactive species generated upon spontaneous loss of L from 3 and 4 . The reaction of 3 with excess PhI displays striking kinetics which initially appears zeroth order in Ru. However mechanistic studies reveal that this is due to autocatalysis comprising two factors: 1) complex 2 , originating from the initial PhI activation with 3 , is roughly as reactive toward PhI as 3 itself; and 2) the Ph I bond cleavage with the just‐produced 2 gives rise to [(Ph3P)2RuI2], which quickly comproportionates with the still‐present 3 to recover 2 . Both the initial and onward activation reactions involve PPh3 dissociation, PhI coordination to Ru through I, rearrangement to a η2‐PhI intermediate, and Ph I oxidative addition.  相似文献   

6.
A combined experimental and theoretical approach has been used to investigate X⋅⋅⋅CH2O (X=F, Cl, Br, I) complexes in the gas phase. Photoelectron spectroscopy, in tandem with time-of-flight mass spectrometry, has been used to determine electron binding energies for the Cl⋅⋅⋅CH2O, Br⋅⋅⋅CH2O, and I⋅⋅⋅CH2O species. Additionally, high-level CCSD(T) calculations found a C2v minimum for these three anion complexes, with predicted electron detachment energies in excellent agreement with the experimental photoelectron spectra. F⋅⋅⋅CH2O was also studied theoretically, with a Cs hydrogen-bonded complex found to be the global minimum. Calculations extended to neutral X⋅⋅⋅CH2O complexes, with the results of potential interest to atmospheric CH2O chemistry.  相似文献   

7.
The geometries, energetics and spectroscopic properties of oxygen clusters, Oxy(x=2~6, y=-2~2), were investigated at the B3LYP/6-311G (d, p) level. The CASSCF calculations were carried out for the ground and excited states of3O2and2O2+. The total energy is3O2(3Σg-)<2O2-(2Πgi)<1O2(1Δg)<1O2-2(1Σg+)<2O2+(2Πg)<1O2+2(1Σg+). The relative energy of the active doublet anion of oxygen molecule,2O2-(2Πgi), is only 28 kJ/mol higher than the triplet neutral oxygen molecule,3O2(3Σg-). The calculated O-O vibrational frequencies all are in good agreement with the experimental values. They are 1577 (1580), 1139 (1090), 1563 (1484), 627 (615~545) and 1993 (1905) cm-1, where the O-O vibrational frequency values in parentheses are experimental values, for3O2(3Σg-),2O2-(2Πgi),1O2(1Δg),1O2-2(1Σg+) and2O2+(2Πg), respectively. Moreover, the O-O vibrational frequency of1O2+2(1Σg+) was computed as 2368 cm-1which has not been reported before at both experimental and theoretical levels. Both bent and linear geometries of O3were studied. The bent-types of O3are more favorable than the linear-type in energy. Three types of structure for oxygen trimers are calculated at the B3LYP/6-311G (d, p) level. They are the structure-I with an obtuse angle of O-O-O,the structure-II with an acute angle of O-O-O, and the structure-III of linear type. For a bent-type structure of O3species (structure-I), the total enegy is2O3-(2B1)<1O3(1A1)<3O3(3B2)<1O3-2(1A1)<2O3+(2A1). The optimization of geometry at B3LYP/6-311G (d, p) level indicated that the species of2O3-(2B1) with 1.3573 of O-O bond length and 115.6584o of O-O-O bond anger is the ground state of O3. The total energy of O4species and their ions is2O4-(Cs,2A′, bend-type)<2O4-(C2v,2A2,face-centered triangle-type)<2O4-(D∞h,2Σg, linear-type)<1O4(Cs,1A′, bend-type)<1O4(D∞h,1Σg, linear-type)<1O4(D4h,1A1g, square-type)<1O4(C2v,1A1, face-centered triangle-type)<2O4-(D4h,1A1g, square-type)<2O4+(D∞h,2Σg, linear-type)<2O4+(Cs,1A′, bend-type). The species with the lowest relative energy is an anion,2O4-(Cs,2A′, bendtype), with chair form geometry and characteristic vibronic frequencies of 1179 and 1349 cm-1. The relative energy of1O5(C2v,1A1) with coplanar-triangle-bicone geometry is the lowest among the O5species and their ions, which may be a resonance structure with1O5(C2v,1A1) of A type. Their characteristic vibronic frequency is 1302 cm-1. The relative energy of the O6species and their ions with hexagon geometry is lower than one with linear geometry. Their infrared vi-bronic intensity may be weak and unobservable but the Raman vibronic intensity may be strong and observable based on their symmetry.  相似文献   

8.
In this article, hydrogen bonding interaction between p-cresol (p-CR) and cyclic ether, tetrahydrofuran (THF) and thioether, tetrahydrothiophene (THT) has been investigated. Two-color resonantly enhanced two-photon ionization in conjunction with the fluorescence detected IR (FDIR) spectroscopy was used to record the changes in the OH stretching frequency in these complexes. The FDIR spectra showed existence of a single conformer of the p-CR·THF and two conformers of the p-CR·THT complex. With the help of computed IR spectra and atoms-in-molecules analysis, the two conformers of p-CR·THT were assigned as the complex of p-CR with THT (C(2))/THT (C(S)). The redshift of OH stretching frequency for the p-CR·THF complex was greater compared to those for the conformers of the p-CR·THT complex. The binding energies of the p-CR·THF and p-CR·THT complexes were computed to be 7.42 and 6.15 kcal/mole. These were of the same order as those for the acyclic analogs, diethylether (DEE), and diethylsulfide (DES), of the solvent molecules under investigation. Although the DEE and THF consist of same number of carbon atoms, the dispersion energy contribution was much higher (43%) for DEE than that for THF (30%). In the case of sulfur analogs, however, it was similar (~50%) in the case of both DES well as THT complexes. All the computed H-bond indicators for these two complexes nicely correlate with the observed redshift of the O-H stretch.  相似文献   

9.
Two novel examples of sandwich type heteropolyanions were synthesized and characterized by X-ray crystal structure and elemental analysis as well as infrared spectroscopy. Na13[H3Cu4(H2O)2(CuW9O34)2]39H2O (1) and Na9K[Fe4(H2O)2(FeW9O34)2]32H2O (2) were prepared in aqueous solution by reaction of sodium tungstate with FeIII and CuII cations, respectively. 1 crystallizes in the monoclinic space group P21/n (a=13.054(3) Å, b=17.729(4) Å, c=20.998(4) Å, =93.50(3)°), while 2 is triclinic, space group P¯1 (a=12.316(2) Å, b=13.716(3) Å, c=14.925(3) Å, =99.36(3)°, =104.21(3)°, =101.55(3)°). Each anion consists of two [XW9O34] n moieties (X=FeIII, n=11 (1) and CuII, n=12 (2)) which can be described as -B-isomers of the defect Keggin anion. These units are linked via a belt of four FeIIIO6 or CuIIO6 groups. Two transition metal atoms fill their octahedral coordination sphere with one additional water ligand.  相似文献   

10.
Single crystals of the new phase Ba5Ru2−xAl1+x−yCuyO11 (x=0.378, y=0.085) have been grown from a powder mixture of BaCO3, RuO2 and CuO in an alumina crucible. The new compound crystallizes isostructurally to Ba5Ir2AlO11. The crystal structure was determined by X-ray single-crystal diffraction technique and refined to a composition of Ba5Ru1.622(8)Al1.29(1)Cu0.085(6)O11 (orthorhombic, Pnma (No. 62), a=18.615(4) Å, b=5.771(1) Å, c=11.098(2) Å, Z=4, R1=0.048, wR2=0.075). The composition of the new compound obtained from crystal structure refinement is in good agreement with the result of electron probe microanalysis using wavelength-dispersive X-ray spectroscopy. Octahedra [RuO6] are connected via faces forming pairs. The central positions of the octahedra pairs are statistically occupied by Ru and Al atoms. These octahedra pairs are interconnected to one-dimensional chains extending along [010] via tetrahedra [Al1−yCuyO4]. Isotypic Ba5Ru1.5Al1.5O11 is a further member of the solid solution with the lattice parameters a=18.6654(5) Å, b=5.7736(1) Å, c=11.0693(3) Å according to Rietveld refinement on a microcrystalline sample.  相似文献   

11.
Regioselectivity for the 5,8,15,18-substituted isomer over the 5,8,14,17-isomer was observed in a series of mercaptan–bromide coupling reactions leading to the formation of 2,11-dithia[3.3]paracyclophanes. Their molecular assembly was established by X-ray crystallographic studies. In the crystal packing of these paracyclophanes, several types of non-covalent interactions including halogen–halogen interaction, halogen-bonding interaction, weak hydrogen-bonding interaction, etc. are observed in crystals 3a, 3b and 3c. There is evidence to indicate that weak non-covalent Br…Br, Br…S, Br…N, C–H…S, S…S and C–H…N interactions play an important role in governing their molecular assembly assumed in the solid state. The attractive interactions of Br…Br, Br…S and Br…N are also rationalised and supported in terms of the density functional theory calculations.

  相似文献   

12.
Density functional calculations on trinuclear complexes bridged by two sulfur atoms, [(tmeda)3Cu3(μ‐S)2]3+, [(tmeda)3Ni3(μ‐S)2]2+, and [(tmeda)3Ni3(μ‐S2)]4+, as well as on the formation of [(tmeda)3Cu3(μ‐S)2]3+ from a dinuclear [(tmeda)2Cu2(μ‐S2)]2+ complex and a mononuclear [(tmeda)Cu(η2‐S2)]+ fragment, are reported. A qualitative orbital analysis of the M3X2 framework bonding is presented for the case in which each metal atom M has a square planar coordination sphere completed by one bidentate or two monodentate ligands (that is, [(L2M)3X2] compounds). It is concluded that a framework electron count (FEC) of 12 corresponds to systems with six M? X bonds but no X? X bond through the cage, while an FEC of 10 favors the formation of an X? X bond. Framework electron counting rules are also presented for related M3X2 cores in [(L5M)3X2] complexes, based on a qualitative molecular orbital (MO) analysis supported by DFT calculations on [(OC)15Cr3(μ‐As2)].  相似文献   

13.
Three new tin coordination compounds (4,4'-Hbipy)2[Sn2(C2O4)3] ( 1 ), (4,4'-H2bipy)[Sn(C2O4)2] ( 2 ), and SnCl2(4,4'-bipy) ( 3 ) were synthesized under hydro-(solvo-)thermal conditions and their crystal structures were determined by single-crystal X-ray diffraction. Compound 1 exhibits a ionic structure based on discrete [4,4'-Hbipy]+ cations and [Sn2(C2O4)3]2– anions. These two units are linked via N–H ··· O hydrogen bonds to form a pseudo-one-dimensional zigzag hydrogen-bonded chain. In compound 2 , four-coordinate Sn atoms form monomeric tin dioxalato complexes, which are connected to the doubly protonated [4,4'-H2bipy]2+ cations through N–H ··· O hydrogen bonded to give a one-dimensional zigzag hydrogen-bonded chain. Compound 3 forms a three-dimensional hydrogen-bonded network, in which 1[SnCl2(4,4'-bipy)] linear chains are interconnected to each other by C–H ··· Cl hydrogen bonding. The solid-state UV/Vis/NIR diffuse reflectance spectroscopy shows that three compounds are broadband semiconductors. The thermogravimetric analysis evidences the thermal stability of the three compounds up to 175, 201, and 246 °C, respectively.  相似文献   

14.
The synthesis, IR spectra, and the temperatures of the transition into a ferromagnetic state (T c) of layered ferromagnetics [R3RX[MCr(C2O4)3 (M = Mn, Fe, Co, Cu, and Ni) with the [Ph3BuP]+, [Bu3RN]+ (R = Pr, Et, and Me) cations capable of subsequently changing the distances between metallooxalate layers have been considered. The temperatureT c has been found to be independent of the size of the organic cation. It is believed that the determining factors in the transition to a ferromagnetic state are exchange interactions inside the metallooxalate layer.Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 9, pp. 2327–2330, September, 1996.  相似文献   

15.
A series of ring-shaped molecular complexes formed by H(3)N, HF and XY (X = Cl, Br and Y = F, Cl, Br) have been investigated at the MP2/aug-cc-pVTZ level of theory. Their optimized geometry, stretching mode, and interaction energy have been obtained. We found that each complex possesses two red-shifted hydrogen bonds and one red-shifted halogen bond, and the two hydrogen bonds exhibit strong cooperative effects on the halogen bond. The cooperativity among the NH(3)···FH, FH···XY and H(3)N···XY interactions leads to the formations of these complexes. The AIM analysis has been performed at the CCSD(T)/aug-cc-pVQZ level of theory to examine the topological characteristics at the bond critical point and at the ring critical point, confirming the coexistence of the two hydrogen bonds and one halogen bond for each complex. The NBO analysis carried out at the B3LYP/aug-cc-pVTZ level of theory demonstrates the effects of hyperconjugation, hybridization, and polarization coming into play during the hydrogen and halogen bonding formations processes, based on which a clockwise loop of charge transfer was discovered. The molecular electrostatic potential has been employed to explore the formation mechanisms of these molecular complexes.  相似文献   

16.
 The most stable structures of V x O y +/V x O y (x=1, 2, y=1–5) clusters and their interaction with O2 are determined by density functional calculations, the B3LYP functional with the 6-31G* basis set. The nature of the bonding of these clusters and the interaction with O2 have been studied by topological analysis in the framework of both the atoms-in-molecules theory of Bader and the Becke–Edgecombe electron localization function. Bond critical points are localized by means of the analysis of the electron density gradient field, ∇ρ(r), and the electron localization function gradient field, ∇η(r). The values of the electron density properties, i.e., electron density, ρ(r), Laplacian of the electron density, ∇2ρ(r), and electron localization function, η(r), allow the nature of the bonds to be characterized, and linear correlation is found for the results obtained in both gradient fields. Vanadium-oxygen interactions are characterized as unshared-electron interactions, and linear correlation is observed between the electron density properties and the V–O bond length. In contrast, O2 units involve typical shared-electron interactions, as for the dioxygen molecule. Four different vanadium–oxygen interactions are found and characterized: a molecular O2 interaction, a peroxo O2 2− interaction, a superoxo O2 interaction and a side-on O2 interaction. Received: 15 October 2001 / Accepted: 30 January 2002 / Published online: 24 June 2002  相似文献   

17.
Ab initio valence bond method is employed to quantitatively study the concepts of ionic resonance energy and ionicity of a chemical bond in the cases of hydrides XH(X=Li,Be,B,C,N,O,F) and fluorides XF(X=Li,Be,B),By establishing the relationship between resonance and stability,and comparing the calculated ionicities with Pauling‘s earlier estimations in the above diatomic molecules,the merits of Pauling‘s classical resonance theory were demonstrated at the ab initio level.  相似文献   

18.
The ionic liquid (IL) trihalogen monoanions [N2221][X3] and [N2221][XY2] ([N2221]+=triethylmethylammonium, X=Cl, Br, I, Y=Cl, Br) were investigated electrochemically via temperature dependent conductance and cyclic voltammetry (CV) measurements. The polyhalogen monoanions were measured both as neat salts and as double salts in 1-butyl-1-methyl-pyrrolidinium trifluoromethane-sulfonate ([BMP][OTf], [X3]/[XY2] 0.5 M). Lighter IL trihalogen monoanions displayed higher conductivities than their heavier homologues, with [Cl3] being 1.1 and 3.7 times greater than [Br3] and [I3], respectively. The addition of [BMP][OTf] reduced the conductivity significantly. Within the group of polyhalogen monoanions, the oxidation potential develops in the series [Cl3]>[BrCl2]>[Br3]>[IBr2]>[ICl2]>[I3]. The redox potential of the interhalogen monoanions was found to be primarily determined by the central halogen, I in [ICl2] and [IBr2], and Br in [BrCl2]. Additionally, tetrafluorobromate(III) ([N2221]+[BrF4]) was analyzed via CV in MeCN at 0 °C, yielding a single reversible redox process ([BrF2]/[BrF4]).  相似文献   

19.
Intramolecular N H···X (X=F, Cl, Br, and Ⅰ) hydrogen bonding patterns of aromatic amides in the solid state are summarized. It is revealed that the key for the formation of this kind of weak intramolecular hydrogen bonding in X-ray crystal structures is to suppress the competition of strong intermolecular N H···O C hydrogen bonding of the amide unit. For amides with identical backbones, the bonding capacity of halogen atoms as hydrogen bonding acceptors is in the order of F>Cl>Br>I, which is in accordance with their electronegativity strength. Generally, the five-membered hydrogen bonding is easier to form than the six-membered one.  相似文献   

20.
We analyze the interplay between pnicogen‐bonding and halogen‐bonding interactions in the XCl? FH2P? NH3 (X=F, OH, CN, NC, and FCC) complex at the MP2/aug‐cc‐pVTZ level. Synergetic effects are observed when pnicogen and halogen bonds coexist in the same complex. These effects are studied in terms of geometric and energetic features of the complexes. Natural bond orbital theory and Bader’s theory of “atoms in molecules” are used to characterize the interactions and analyze their enhancement with varying electron density at critical points and orbital interactions. The physical nature of the interactions and the mechanism of the synergetic effects are studied using symmetry‐adapted perturbation theory. By taking advantage of all the aforementioned computational methods, the present study examines how both interactions mutually influence each other.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号