首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
We used semiempirical and ab initio calculations to investigate the nucleophilic attack of the hydroxyl ion on the β-lactam carbonyl group. Both allowed us to detect reaction intermediates pertaining to proton-transfer reactions. We also used ab initio calculations and the PM3 semiempirical method to investigate the influence of the solvent on the process. The AMSOL method predicts the occurrence of a potential energy barrier of 20.7 kcal mol−1 due to the desolvation of the hydroxyl ion in approaching the β-lactam carbonyl group. Using the supermolecular approach and a water solvation sphere of 20 molecules around the solute, the potential energy barrier is lowered to 17.5 kcal mol−1. Ab initio calculations using the SCRF method predict a potential energy barrier of 13.6 kcal mol−1. These three values, especially the last two, are very close to the experimental value of 16.7 kcal mol−1.  相似文献   

2.
The reaction of HOCl + HCl → Cl2 + H2O in the presence of chlorine anion Cl has been studied using ab initio methods. The overall exothermicity is 15.5 kcal mol−1 and this reaction has been shown to have a high activation barrier of 46.5 kcal mol−1. Cl is found to catalyze the reaction via the formation of HOCl·Cl, ClH·HOCl·Cl and Cl·H2) intermediate ion-molecule complexes or by interacting with a concerted four-center transition state of the reaction of HOCl + HCl.  相似文献   

3.
The energy and force field for the planar cis and trans conformers of thionformic acid have been calculated using the 4–31 G basis set, augmented by a complete set of d-functions on the sulfur atom, with full geometry optimization. Extensive comparisons are made between the changes in geometry and selected force constants in going from cis- (chain) to the trans- (ring) structures of thionformic, thiolformic and formic acid. These changes are discussed in terms of a hydrogen bonding type of interaction in the O---HS, S---HO and O---HO structural units respectively. Of the thioacid conformers, the trans-thiol is found to be the most stable; the trans-thion and cis-thiol both about 10 kJ mol−1 less stable; and the cis-thion the least stable by about 38 kJ mol−1.  相似文献   

4.
The relative stabilities and electronic structures of the linkage isomers NSO and SNO have been determined by the MNDO and ab initio Hartree—Fock—Slater methods. Both approaches predict a higher stability for SNO by ca. 100 kcal mol−1, but an overlap population analysis indicates substantially higher bond orders for NSO compared to SNO. The calculations also reveal a low energy pathway with a barrier of ca. 6 kcal mol−1 for the isomerization process NSO → SNO. Good agreement was found between the observed UV-visible absorption bands for NSOmax 379 nm) and SNOmax 340 nm) and calculated values of the electronic transition energies.  相似文献   

5.
The gas-phase rapid ion-molecule reaction Si+ (2P) + NH3→ SiNH2+ + H is theoretically investigated by the ab initio molecular orbital methods. Several possible pathways (A, B, C) on its potential energy surface have been examined, discussed and compared. Theoretical calculations indicate that pathway A is favourable in energy and that the reaction begins by forming a collision complex of the ion-dipole molecule Si-NH+3, which forms with no barrier into the first energy well of the reaction coordinate. Migration of an H atom from an N atom to a Si atom forms the intermediate HSi-NH+2, which corresponds to the second energy well and can fragment to the observed product SiNH+2 by losing an H atom from the Si atom. The barriers for migration and fragmentation are 52.5 and 38.6 kcal mol−1 respectively. Pathway A has a negative activation energy of −42.1 kcal mol−1.  相似文献   

6.
Gaussian-2 ab initio calculations were performed to examine the six modes of unimolecular dissociation of cis-CH3CHSH+ (1+), trans-CH3CHSH+ (2+), and CH3SCH2+ (3+): 1+→CH3++trans-HCSH (1); 1+→CH3+trans-HCSH+ (2); 1+→CH4+HCS+ (3); 1+→H2+c-CH2CHS+ (4); 2+→H2+CH3CS+ (5); and 3+→H2+c-CH2CHS+ (6). Reactions (1) and (2) have endothermicities of 584 and 496 kJ mol−1, respectively. Loss of CH4 from 1+ (reaction (3)) proceeds through proton transfer from the S atom to the methyl group, followed by cleavage of the C–C bond. The reaction pathway has an energy barrier of 292 kJ mol−1 and a transition state with a wide spectrum of nonclassical structures. Reaction (4) has a critical energy of 296 kJ mol−1 and it also proceeds through the same proton transfer step as reaction (3), followed by elimination of H2. Formation of CH3CS+ from 2+ (reaction (5)) by loss of H2 proceeds through protonation of the methine (CH) group, followed by dissociation of the H2 moiety. Its energy barrier is 276 kJ mol−1. On both the MP2/6-31G* and QCISD/6-31G* potential-energy surfaces, the H2 1,1-elimination from 3+ (reaction (6)) proceeds via a nonclassical intermediate resembling c-CH3SCH2+ and has a critical energy of 269 kJ mol−1.  相似文献   

7.
Variable temperature (−55 to −150°C) studies of the infrared spectra (3500 to 400 cm−1) of dimethylmethoxyphosphine, (CH3)2POCH3 and dimethyl(methylthio)phosphine, (CH3)2PSCH3 dissolved in liquid krypton and/or xenon have been recorded. From these data, the enthalpy differences have been determined to be 393±50 cm−1 (4.71±0.60 kJ/mol), for (CH3)2POCH3 with the near-cis conformer the more stable rotamer and 80±10cm−1 (0.96±0.12 kJ/mol) for (CH3)2PSCH3 with the cis conformer the more stable form. Complete vibrational assignments are presented for both molecules, which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G(d) calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G(d) and/or MP2/6-31G(d) ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate as well as with some corresponding results for some similar molecules.  相似文献   

8.
The activation barrier for the CH4 + H → CH3 + H2 reaction was evaluated with traditional ab initio and Density Functional Theory (DFT) methods. None of the applied ab initio and DFT methods was able to reproduce the experimental activation barrier of 11.0-12.0 kcal/mol. All ab initio methods (HF, MP2, MP3, MP4, QCISD, QCISD(T), G1, G2, and G2MP2) overestimated the activation energy. The best results were obtained with the G2 and G2MP2 ab initio computational approaches. The zero-point corrected energy was 14.4 kcal mol−1. Some of the exchange DFT methods (HFB) computed energies which were similar to the highly accurate ab initio methods, while the B3LYP hybrid DFT methods underestimated the activation barrier by 3 kcal mol−1. Gradient-corrected DFT methods underestimated the barrier even more. The gradient-corrected DFT method that incorporated the PW91 correlational functional even generated a negative reaction barrier. The suitability of some computational methods for accurately predicting the potential energy surface for this hydrogen radical abstraction reaction was discussed.  相似文献   

9.
Internal rotation and nitrogen inversion in 1-formylaziridine (1) have been investigated by quantum mechanical (ab initio and MNDO) calculations, especially with respect to the variation of the geometry of the aziridine ring. While conformational stability is mainly determined by the n(N)/π(CO) interaction, the bond lengths within the ring are affected by the amount of interaction between the π(CO) orbital and the Walsh orbital ωA. To separate the two types of interaction, calculations were also performed on formylcyclopropane (9). The torsional potential of 1 has a minimum close to the perpendicular conformation 1b. The two bisected conformations, 1a and 1c, are transition states for internal rotation. For nitrogen inversion, a barrier of 1.44 kcal mol−1 (ab initio) was calculated. Calculations on 1-cyanoaziridine (7) gave inversion barriers of 5.81 (ab initio) and 12.31 kcal mol−1 (MNDO). Probably due to methodical reasons the ab initio values seem to be too low, as calculations with different basis sets for aziridine indicate.  相似文献   

10.
The enthalpy of formation (ΔHf0), enthalpy of evaporation (ΔHv0) and enthalpy of atomization (ΔHa) of permethylcyclosilazanes (Me2SiNH)n (n = 3, 4) and 1,1,3,3-tetramethyldisilazane (Me2SiH)2NH have been determined. The enthalpies of formation of these compounds were compared with those calculated by the Benson-Buss-Franklin and Tatevskii additive schemes. In higher permethylcyclosilazanes the energy of the endocyclic Si---N bond is 306 ± 2 kJ mol−1 (73 kcal mol−1), that is 12 ± 2 kJ mol−1 (3 kcal mol−1) lower than the energy of the acyclic Si---N bond. The strain energy of the cyclotrisilazane ring is estimated to be 10.5 kJ mol−1 (2.5 kcal mol−1), whereas the energy of the ring Si---N bond is 295 kJ mol−1 (70.5 kcal mol−1).

The thermochemical data for permethylcyclosilazanes were compared with the corresponding values for permethylcyclosiloxanes calculated from the results of previously reported studies.  相似文献   


11.
The conformational stability and structure of 2,3-dimethylpropenal, 2,3-difluoropropenal and their 3,3-dimethyl and 3,3-difluoro derivatives were investigated utilizing ab initio calculations with 3-21G and 6-31G basis sets. For 2,3-dimethylpropenal and 3,3-difluoropropenal the s-trans was predicted to be the low-energy form. In the case of 3,3-dimethylpropenal and 2,3-difluoropropenal the s-cis was predicted by both levels of calculation to be the more stable conformer. Full optimization was performed at the transition states and the barriers to internal rotation were calculated. Methyl and fluorine substitution were found to significantly increase the barrier to interconversion in propenal. The relative change in the barrier depends on the position and the type of the substituent. The trans to cis barrier in 2,3-dimethylpropenal was calculated to be about 3 kcal mol−1 greater than that in 3,3-dimethylpropenal, while the cis to trans barrier in 2,3-difluoropropenal was predicted to be about 7 kcal mol−1 higher than the corresponding one in 3-3-difluoropropenal.  相似文献   

12.
High-level ab initio (MP2/6-311++G(2d,2p) geometry, Gaussian-2, MP4(SDTQ) and QCISD(T) binding energies) and density-functional (Becke3LYP/6-311++G(2df,2pd)) calculations have been performed on the charge-transfer complex between water and carbon dioxide. The complex appears to have two equivalent non-planar minima of Cs symmetry. Minima are separated by transition states with C1 symmetry, whereas the totally planar structure with C2v symmetry is a second-order transition state. All the critical points lie at approximately the same energy (less than 0.05 Kj mol−1 difference). Therefore, the experimentally observable structure should be planar. The best equilibrium intermolecular distance for this complex calculated at the MP2/6-311++G(2d,2p) level is 2.800 Å. Our best estimate of the observable intermolecular distance (corrected for anharmonicity) is 2.84 Å, in agreement with the experimentally derived value of 2.836 Å. Our best estimate of the binding energy at the QCISD(T) level, taking into account the variation of the distance owing to anharmonicity and the use of more sophisticated theoretical treatments, is −12.0 ± 0.2 kJ mol−1. Our best estimate of the barrier to internal rotation, also at the MP2/6-311++G(2d,2p) level, is 4.0 kJ mol−1, outside the error limits of the experimental determination (3.64 ± 0.04 kJ mol−1). Density functional theory at the level employed here gives an equilibrium intermolecular distance that is too large (2.857 Å), a binding energy that is too small (8.1 kJ mol−1), attributable neither to geometry nor to the basis set, and also a barrier to internal rotation that is slightly too small (3.39 kJ mol−1). The overall picture is, however, reasonably good.  相似文献   

13.
The molecular structure and conformational properties of O=C(N=S(O)F2)2 (carbonylbisimidosulfuryl fluoride) were determined by gas electron diffraction (GED) and quantumchemical calculations (HF/3-21G* and B3LYP/6-31G*). The analysis of the GED intensities resulted in a mixture of 76(12)% synsyn and 24(12)% synanti conformer (ΔH0=H0(synanti)−H0(synsyn)=1.11(32) kcal mol−1) which is in agreement with the interpretation of the IR spectra (68(5)% synsyn and 32(5)% synanti, ΔH0=0.87(11) kcal mol−1). syn and anti describe the orientation of the S=N bonds relative to the C=O bond. In both conformers the S=O bonds of the two N=S(O)F2 groups are trans to the C–N bonds. According to the theoretical calculations, structures with cis orientation of an S=O bond with respect to a C–N bond do not correspond to minima on the energy hyperface. The HF/3-21G* approximation predicts preference of the synanti structure (ΔE=−0.11 kcal mol−1) and the B3LYP/6-31G* method results in an energy difference (ΔE=1.85 kcal mol−1) which is slightly larger than the experimental values. The following geometric parameters for the O=C(N=S)2 skeleton were derived (ra values with 3σ uncertainties): C=O 1.193 (9) Å, C–N 1.365 (9) Å, S=N 1.466 (5) Å, O=C–N 125.1 (6)° and C–N=S 125.3 (10)°. The geometric parameters are reproduced satisfactorily by the HF/3-21G* approximation, except for the C–N=S angle which is too large by ca. 6°. The B3LYP method predicts all bonds to be too long by 0.02–0.05 Å and the C–N=S angle to be too small by ca. 4°.  相似文献   

14.
Monte Carlo simulation studies of statistical perturbation theory (SPT) have been carried out to investigate the solvent effects on the relative free energies of solvation and the difference in partition coefficients (log P) for K+ to Na+ ion mutation in the several solvents. We compared the relative free energies for interconversion of K+ to Na+, in H2O (TIP4P) in this study with those published works, that in H2O (TIP4P) is −16.55 kcal/mol in this study, those of the published works are −17.6, −17.3 and −17.31 kcal/mol and that of the experiment is −17.6 kcal/mol, respectively. Comparing the relative free energies for interconversion of K+ to Na+, in CH3OH in this study with those published works, that in CH3OH is −18.08±0.28 kcal/mol in this study, that of molecular dynamic simulation is −19.6±0.4 kcal/mol and that of the experimental work is −17.3 kcal/mol, respectively. There is good agreement among the several studies if we consider both methods of obtaining the solvation (or hydration) free energies and the standard deviations. For the present K+ and Na+ ions, the relative free energies of solvation vs Born's function of solvents are decreased with increasing Born's function of solvent except for CH3OH, THF and MEOME. There is also good agreement between the calculated structural properties in this study and the computer simulation, ab initio and experimental works.  相似文献   

15.
The infrared spectra (3200–30 cm−1) of gaseous and solid ethyl fluorosilane, CH3CH2SiH2F, have been recorded. Additionally, the Raman spectra (3200–30 cm−1) of the liquid and solid have been recorded and quantitative depolarization values obtained. Both the gauche and trans conformers have been identified in the fluid phases but only the gauche conformer remains in the solid. Variable temperature (−105 to −150°C) studies of the infrared spectra of the sample dissolved in liquid krypton have been carried out. From these data, the enthalpy difference has been determined to be 54±16 cm−1 (646±191 J/mol) with the gauche conformer the more stable form. This is consistent with the predictions from ab initio, MP2/6-311+G(2d,2p), calculation as well as those with smaller basis sets with full electron correlations. A complete vibrational assignment is proposed for both the trans and gauche conformers based on infrared band contours, relative intensities, depolarization values, and group frequencies, which are supported by normal-coordinate calculations utilizing the force constants from MP2/6-31G(d) ab initio calculations. Complete equilibrium geometries have been determined for both rotamers by ab initio calculations employing a variety of basis sets up to 6-311+G(2d,2p) at levels of restricted Hartree–Fock (RHF) and/or Moller Plesset to the second order (MP2) with full electron correlation. The adjusted r0 parameters have been obtained for both conformers from a combination of the previously reported rotational constants with ab initio predicted values. All results are compared to similar quantities of some corresponding molecules.  相似文献   

16.
The molecular structure (equilibrium geometry) and binding energy of the dimethylzinc (DMZn)-hydrogen selenide (H2Se) adduct, (CH3)2Zn:SeH2, have been computed with ab initio molecular orbital and density functional theory (DFT) methods and, where possible, compared with experimental results. The structure of the precursors DMZn and H2Se are perturbed to only a small extent upon adduct formation. (CH3)2Zn:SeH2 was found to be 3 kcal mol−1 less stable than the precursors at the B3LYP/6-311 + G(2d,p)//B3LYP/6-311 + G(2d,p) level of computation, indicating that the (CH3)2Zn:SeH2 adduct is unlikely to be a stable gas-phase species under chemical vapour deposition conditions. Further calculations at the B3LYP/6-311 + G(2d,p)//B3LYP/6-311 + G(2d,p) level of computation suggest that the 1:2 adduct species, (CH3)2Zn:(SeH2)2, is much less stable than the 1:1 adduct and consequently the precursors by 19 kcal mol−1.  相似文献   

17.
A substitution on 2,2-difluorovinylic carbon was investigated by using ab initio molecular orbital calculations. Three feasible mechanisms, which are the SN1-like, the SN2-type and the addition-elimination mechanisms, were ex- amined for a model borate, 2,2-difluoro-1-mesyloxyvinyl(trimethyl)borate. Four TSs were obtained depending on the position of Li+ around the vinylborate although activation energies in the gas phase are rather high (ca. 30–40 kcal mol−1) in comparison with that expected from the experimental conditions. It was confirmed at the SCRF-IPCM calculations that the solvent effect reduces the acti- vation energy of one SN2-type mechanism very much (4. l kcal mol−1 at the B3LYP/6-31+G*//RHF/6-31+G/s* level of theory) while those for the other mechanisms do not change very much. Therefore, the SN2-type mechanism is applicable to the substitution reaction observed for the vinylborate.  相似文献   

18.
Variable temperature (−55 to −135°C) studies of the infrared spectra (3500–400 cm−1) of 1-bromo-2-fluoroethane, BrCH2CH2F, dissolved in liquid krypton and xenon have been recorded. From these data, the enthalpy difference has been determined to be 108±9 cm−1 (1.296±0.113 kJ/mol) and 112±8 cm−1 (1.346±0.098 kJ/mol) from the krypton and xenon solutions, respectively, with the trans conformer the more stable rotamer. Complete vibrational assignments are presented for both conformers which are consistent with the predicted frequencies obtained from the ab initio MP2/6-31G* calculations. The optimized geometries, conformational stabilities, harmonic force fields, infrared intensities, Raman activities, and depolarization ratios have been obtained from RHF/6-31G* and/or MP2/6-31G* ab initio calculations. These quantities are compared to the corresponding experimental quantities when appropriate. Structural parameters and conformational stability have also been obtained from MP2/6-311+G** calculations. Combining the ab initio predicted structural parameters with the microwave rotational constants, ro parameters have been obtained for the gauche conformer.  相似文献   

19.
DFT-calculations were performed on retinal in the all-trans, 1, 11-cis-12-s-cis, 2, and 11-cis-12-s-trans configuration, 3, and on the corresponding N-methyl Schiff base and protonated N-methyl Schiff base derivatives; for the latter, the corresponding 6-s-trans conformations and the 6-s-trans-13-cis-14-s-trans isomer which play a role in the bacteriorhodopsin photocycle were also studied. All geometries were fully optimized using the Becke- three-parameter Lee-Yang-Parr method in conjunction with the 6-31G** basis set (B3LYP/6-31G**). The stabilities in order of increasing energy are 1, 3 and 2 regardless of the type of substitution of the end group. While the energy of 3 relative to 1 is almost constant (5 ± 0.2 kcal mol−1), the relative energy of 2 depends somewhat on the nature of the functional group: it is highest in the protonated Schiff base derivative 2-SBH + with its steric congestion along the C12-C13 bond. Comparison with results previously obtained on the basis of RHF/6-31G** ab initio calculations reveals that the B3LYP method is more biased towards π-electron delocalization. This is indicated by the reduced degree of double bond fixation along the chromophore and also in the increased tendency towards planarization as manifest, e.g. by the change of the C5-C6-C7-C8 dihedral angle between the cyclohexene ring and the open chain double bond system.  相似文献   

20.
A gas electron diffraction study of cyclobutylsilane results in a mixture of equatorial and axial conformers, with the equatorial confomer slightly more stable (Δ G = 0.8 ± 0.4 kJ mol−1). The cyclobutyl ring is distorted with the adjacent bonds longer (C1---C2 = 1.573 (4) Å) than the opposite bonds (C2---C3 = 1.557 (4) Å). The experimental values for the energy difference between the two conformers and for the geometric parameters are reproduced very well by ab initio calculations. The importance of silicon 3d orbitals in the interpretation of ring distortion is ambiguous, but on the basis of the ab initio calculations the participation of silicon 3d functions is negligible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号