首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
High mass measurement accuracy of peptides in enzymatic digests is critical for confident protein identification and characterization in proteomics research. Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) can provide low or sub-ppm mass accuracy and ultrahigh resolving power. While for ESI-FT-ICR-MS, the mass accuracy is generally 1 ppm or better, with matrix-assisted laser desorption/ionization (MALDI)-FT-ICR-MS, the mass errors can vary from sub-ppm with internal calibration to over 100 ppm with conventional external calibration. A novel calibration method for (15)N-metabolically labeled peptides from a batch digest of a proteome is described which corrects for space charge induced frequency shifts in FT-ICR spectra without using an internal calibrant. This strategy utilizes the information from the mass difference between the (14)N/(15)N peptide peak pairs to correct for space charge induced mass shifts after data collection. A procedure for performing the mass correction has been written into a computer program and has been successfully applied to high-performance liquid chromatography-MALDI-FT- ICR-MS measurement of (15)N-metabolic labeled proteomes. We have achieved an average measured mass error of 1.0 ppm and a standard deviation of 3.5 ppm for 900 peptides from 68 MALDI-FT-ICR mass spectra of the proteolytic digest of a proteome from Methanococcus maripaludis.  相似文献   

2.
Protein identifications by peptide mass fingerprint analyses with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) were performed using microelectrospray ionization coupled to nano liquid chromatography (NanoLC), as well as using matrix-assisted laser desorption/ionization (MALDI). Tryptic digests of bovine serum albumin (BSA), diluted down to femtomole quantities, have been desalted by fast NanoLC under isocratic elution conditions as the high resolving power of FT-ICR MS enables peptides to be separated during the mass analysis stage of the experiment. The high mass accuracy achieved with FT-ICR MS (a few ppm with external calibration) facilitated unambiguous protein identification from protein database searches, even when only a few tryptic peptides of a protein were detected. Statistical confidence in the database search results was further improved by internal calibration due to increased mass accuracy. Matrix-assisted laser desorption/ionization and micro electrospray ionization (ESI) FT-ICR showed good mass accuracies in the low femtomole range, yet a better sensitivity was observed with MALDI. However, in higher femtomole ranges slightly lower mass accuracies were observed with MALDI FT-ICR than with microESI FT-ICR due to scan-to-scan variations of the ion population in the ICR cell. Database search results and protein sequence coverage results from NanoLC FT-ICR MS and MALDI FT-ICR MS, as well as the effect of mass accuracy on protein identification for the peptide mass fingerprint analysis are evaluated.  相似文献   

3.
Natural organic matter (NOM) is a complex and non-uniform mixture of organic compounds which plays an important role in environmental processes. Due to the complexity, it is challenging to obtain fully detailed structural information about NOM. Although Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) has been demonstrated to be a powerful tool for providing molecular information about NOM, multiple ionization methods are needed for comprehensive characterization of NOM at the molecular level considering the ionizing selectivity of different ionization methods. This paper reports the first use of matrix assisted laser desorption/ionization (MALDI) method coupled with FT-ICR-MS for molecular characterization of NOM within a mass range of 200–800 Da. The mass spectral data obtained by MALDI were systematically compared with data generated by electrospray ionization (ESI). It showed that complementary molecular information about NOM which could not be detected by ESI, were provided by MALDI. More unsaturated and aromatic constituents of NOM with lower O/C ratio (O/C ratio < 0.5) were preferentially ionized in MALDI negative mode, whereas more polar constituents of NOM with higher O/C ratio were preferentially ionized in ESI negative mode. Molecular anions of NOM appearing at even m/z in MALDI negative ion mode were detected. The results show that NOM molecules with aromatic structures, moderate O/C ratio (0.7 > O/C ratio > 0.25) and lower H/C ratio were liable to form molecular anions at even m/z, whereas those with higher H/C ratio are more likely to form deprotonated ions at odd m/z. It is speculated that almost half of the NOM molecules identified by MALDI may be aromatic or condensed aromatic compounds with special groups which are liable to absorb electron from other molecules to generate free radical anions during MALDI ionization.  相似文献   

4.
Matrix‐assisted laser desorption/ionization (MALDI) is a mass spectrometry (MS) ionization technique suitable for a wide variety of sample types including highly complex ones such as natural resinous materials. Coupled with Fourier transform ion cyclotron resonance (FT‐ICR) mass analyser, which provides mass spectra with high resolution and accuracy, the method gives a wealth of information about the composition of the sample. One of the key aspects in MALDI‐MS is the right choice of matrix compound. We have previously demonstrated that 2,5‐dihydroxybenzoic acid is suitable for the positive ion mode analysis of resinous samples. However, 2,5‐dihydroxybenzoic acid was found to be unsuitable for the analysis of these samples in the negative ion mode. The second problem addressed was the limited choice of calibration standards offering a flexible selection of m/z values under m/z 1000. This study presents a modified MALDI‐FT‐ICR‐MS method for the analysis of resinous materials, which incorporates a novel matrix compound, 2‐aminoacridine for the negative ion mode analysis and extends the selection of internal standards with m/z <1000 for both positive (15 different phosphazenium cations) and negative (anions of four fluorine‐rich sulpho‐compounds) ion mode. The novel internal calibration compounds and matrix material were tested for the analysis of various natural resins and real‐life varnish samples taken from cultural heritage objects. Copyright © 2017 John Wiley & Sons, Ltd.  相似文献   

5.
2,5‐Dihydroxybenzoic acid (DHB) is one of the most widely used and studied matrix compounds in matrix‐assisted laser desorption/ionization (MALDI) mass spectrometry. However, the influence of ageing of the DHB solution on the MALDI mass spectra has not been yet systematically studied. In this work, the possible changes occurring in the acidified acetonitrile/water solution of the MALDI matrix compound DHB during 1‐year usage period have been monitored with MALDI‐Fourier transform ion cyclotron resonance mass spectrometer (MALDI‐FT‐ICR‐MS) and attenuated total reflectance Fourier transform infrared (ATR‐FT‐IR) spectroscopy. No significant ageing products have been detected. The ability of the aged DHB solution to act as a MALDI matrix was tested with two materials widely used in art and conservation – bone glue (a proteinaceous material) and shellac resin (a resinous material) – and good results were obtained. A number of peaks in the mass spectra measured from the DHB solution were identified, which can be used for internal calibration of the mass axis. Copyright © 2014 John Wiley & Sons, Ltd.  相似文献   

6.
A MALDI source is interfaced to a modified LTQ Orbitrap XL instrument. This work gives insight into the MALDI source design and shows results obtained with the MALDI source coupled to an accurate mass, high-resolution hybrid mass spectrometer. MALDI-produced ions and fragment ions thereof produced in the mass spectrometer may be analyzed and detected by the Orbitrap analyzer at a maximum mass resolution of 100,000 (FWHM) at m/z 400 with high mass accuracy. An accuracy of ≤2 ppm is achieved by internal mass calibration using lock mass functionality; using external mass calibration, an accuracy of ≤3 ppm is routinely obtained. External mass calibration of the hybrid mass spectrometer is performed using a standard calibration mixture of different peptides and matrix components. The instrumental capabilities are demonstrated for analytical methodologies such as Protein ID using Peptide Mass Fingerprint (PMF) and MS/MS analyses of small molecule samples. Stability of mass accuracy and signal-to-noise ratio for low samples loads (on plates) are demonstrated as well as the experimental dynamic range using α-cyano-4-hydroxy cinnamic acid (CHCA) matrix.  相似文献   

7.
Roots and extracts of the kava plant have been used in herbal medicine to treat sleep disturbances, stress and anxiety, although reported cases of liver toxicity led to many countries restricting its sale. The detection of the presence of kava in many medicinal products requires the use of methods capable of identifying the kavalactones with high certainty. Here, we describe the use of Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) for the characterisation of six kavalactones (kavain, dihydrokavain, methysticin, dihydromethysticin, yangonin and desmethoxyyangonin) utilising accurate mass measurement for the determination of their elemental formulae and product ion MS (both sustained off-resonance irradiation collision-induced dissociation and infrared multiphoton dissociation (SORI-CID and IRMPD) for structural confirmation. High performance liquid chromatography/FT-ICR-MS with a dual spray system for internal calibration of mass spectra was employed for accurate mass measurement and the determination of elemental formulae of the kavalactones in both standards and a root extract to confirm the presence of the kavalactones in the root powder. Mass accuracy of < 1 ppm was achieved. For structural confirmation, the IRMPD and SORI-CID spectra of the kavalactones in standards and a kava root powder extract were compared. Accurate mass measurement of the product ions was also conducted by external calibration and the elemental formula determined to aid with structural confirmation. The presence of the same fragment ions detected in the standards as in the extract further confirmed the presence of the kavalactones in the kava root powder with high certainty.  相似文献   

8.
We report an evaluation of a modern Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) instrument to determine the general trend of post-excitation radius on total ion abundance, mass measurement accuracy, and isotopic distributions for internally calibrated mass spectra. The optimum post-excitation radius was determined using total ion abundance, mass measurement accuracy (MMA), and isotope ratios. However, despite the utility of internal calibration for achieving ultimate MMA, the internal calibrant ions were insufficient for compensating for sub-optimum ICR cell conditions. The findings presented herein underscore the importance of determining the optimal post-excitation radius in FT-ICR-MS to achieve high ion abundance (low limits of detection), high MMA, and valid isotopic distributions.  相似文献   

9.
Fourier transform ion cyclotron resonance mass spectrometry has been found to produce reliable exact mass measurements using two different internal calibration methods. For these measurements, electrospray ionization (ESI) and matrix-assisted laser desorption/ionization (MALDI) were utilized both individually and in tandem. For internal calibration with a co-dissolved polyethylene glycol standard, measurements of 41 compounds resulted in an average absolute mass determination error of 0.7 ppm, with a standard deviation of 0.9 ppm. For comparison, internal calibration was effected through the simultaneous use of ESI and MALDI, with the former being used for the introduction of analyte ions and the latter for formation of polymethylmethacrylate calibrant ions. This technique led to mass measurements with an average absolute error of 0.8 ppm and a standard deviation of 1.0 ppm. In addition, exact mass measurements of tandem mass spectrometry fragment ions were made for 35 compounds using external calibration with a single internal mass standard. The observed average absolute error was 0.7 ppm with a standard deviation of 1.0 ppm.  相似文献   

10.
The molar mass determination of block copolymers, in particular amphiphilic block copolymers, has been challenging with chromatographic techniques. Therefore, methoxy poly(ethylene glycol)‐b‐poly(styrene) (mPEG‐b‐PS) was synthesized by atom transfer radical polymerization (ATRP) and characterized in detail not only by conventional chromatographic techniques, such as size exclusion chromatography (SEC), but also by matrix‐assisted laser/desorption ionization tandem mass spectrometry (MALDI‐TOF MS/MS). As expected, different molar mass values were obtained in the SEC measurements depending on the calibration standards (either PEG or PS). In contrast, MALDI‐TOF MS/MS analysis allowed the molar mass determination of each block, by the scission of the weakest point between the PEG and PS block. Thus, fragments of the individual blocks could be obtained. The PEG block showed a depolymerization reaction, while for the PS block fragments were obtained in the monomeric, dimeric, and trimeric regions as a result of multiple chain scissions. The block length of PEG and PS could be calculated from the fragments recorded in the MALDI‐TOF MS/MS spectrum. Furthermore, the assignment of the substructures of the individual blocks acquired by MALDI‐TOF MS/MS was accomplished with the help of the fragments that were obtained from the corresponding homopolymers. © 2010 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem, 2010  相似文献   

11.
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) of a steam-exploded lignin from wheat straw showed that fragments with a mass higher than 4534?Da cannot be obtained. Furthermore, FT-ICR-MS showed that lignin is not a completely random polymer, but shows some regularity with a difference of 44.026?m/z (C?H?O) between the peaks. The distribution of Kendrick mass defect in the function of Kendrick nominal masses showed the same behaviour. FT-ICR-MS analysis of bagasse lignin (Granit) showed that the largest value of mass found was 4347?Da. The peaks show regularities with a difference of 44.026?m/z between the peaks. The organosolv lignin showed that the polymer with the largest mass value was 3699?Da in FT-ICR-MS. The analysis of the peaks did not show regularity; however, the Kendrick diagram for this lignin showed the same slope as in the other samples, in agreement with the C?H?O regular difference between peaks.  相似文献   

12.
We have previously described the site-specific glycosylation analysis of rat brain Thy-1 by LC/multistage tandem mass spectrometry (MS(n)) using proteinase-digested Thy-1. In the present study, detailed structures of oligosaccharides released from Thy-1 were elucidated by mass spectrometric oligosaccharide profiling using LC/MS with a graphitized carbon column (GCC-LC/MS). First, using model oligosaccharides, we improved the oligosaccharide profiling by ion trap mass spectrometry (IT-MS) coupled with Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS). Sequential scanning of a full MS(1) scan with FT-ICR-MS followed by data-dependent MS(n) with IT-MS in positive ion mode, and a subsequent full MS(1) scan with FT-ICR-MS followed by data-dependent MS(n) with IT-MS in negative ion mode enabled the monosaccharide composition analysis as well as profiling and sequencing of both neutral and acidic oligosaccharides in a single analysis. The improved oligosaccharide profiling was applied to elucidation of N-linked oligosaccharides from Thy-1 isolated by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. It was demonstrated that Thy-1 possesses a significant variety of N-linked oligosaccharides, including Lewis a/x, Lewis b/y, and disialylated structure as a partial structure. Our method could be applicable to analysis of a small abundance of glycoproteins, and could become a powerful tool for glycoproteomics.  相似文献   

13.
复方板蓝根颗粒化学成分的质谱研究   总被引:2,自引:0,他引:2  
利用电喷雾多级串联质谱(ESI-MSn)和傅里叶变换离子回旋共振质谱(FT-ICR-MS)技术,对复方板蓝根颗粒经溶剂萃取后的95%(体积分数)醇提和水提部位的化学成分进行了系统研究,鉴定出多种氨基酸成分、糖及其衍生物、有机酸、氨基酸和单糖的梅拉德反应初级产物以及含硫化合物表告依春.该方法灵敏快速,适宜于中药提取物的化学成分分析.  相似文献   

14.
A new external calibration procedure for FT-ICR mass spectrometry is presented, stepwise-external calibration. This method is demonstrated for MALDI analysis of peptide mixtures, but is applicable to any ionization method. For this procedure, the masses of analyte peaks are first accurately measured at a low trapping potential (0.63 V) using external calibration. These accurately determined (< 1 ppm accuracy) analyte peaks are used as internal calibrant points for a second mass spectrum that is acquired for the same sample at a higher trapping potential (1.0 V). The second mass spectrum has a approximately 10-fold improvement in detection dynamic range compared with the first spectrum acquired at a low trapping potential. A calibration equation that accounts for local and global space charge is shown to provide mass accuracy with external calibration that is nearly identical to that of internal calibration, without the drawbacks of experimental complexity or reduction of abundance dynamic range. For the 609 mass peaks measured using stepwise-external calibration method, the root-mean-square error is 0.9 ppm. The errors appear to have a Gaussian distribution; 99.3% of the mass errors are shown to lie within three times the sample standard deviation (2.6 ppm) of their true value.  相似文献   

15.
Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR-MS) was used to determine the structures of anhydroicaritin glycosides by the MS/MS experiments of anhydroicaritin glycosides and their methylated derivatives,With high accuracy FT-ICR-MS provides much information about the structures of compounds ,FT-ICR-MS shows the great potential application in the structural characterization of unknown compounds.  相似文献   

16.
In pre‐implantation embryos, lipids play key roles in determining viability, cryopreservation and implantation properties, but often their analysis is analytically challenging because of the few picograms of analytes present in each of them. Matrix‐assisted laser desorption/ionization mass spectrometry (MALDI‐MS) allows obtaining individual phospholipid profiles of these microscopic organisms. This technique is sensitive enough to enable analysis of individual intact embryos and monitoring the changes in membrane lipid composition in the early stages of development serving as screening method for studies of biology and biotechnologies of reproduction. This article introduces an improved, more comprehensive MALDI‐MS lipid fingerprinting approach that considerably increases the lipid information obtained from a single embryo. Using bovine embryos as a biological model, we have also tested optimal sample storage and handling conditions before the MALDI‐MS analysis. Improved information at the molecular level is provided by the use of a binary matrix that enables phosphatidylcholines, sphingomyelins, phosphatidylserines, phosphatidylinositols and phosphoethanolamines to be detected via MALDI(±)‐MS in both the positive and negative ion modes. An optimal MALDI‐MS protocol for lipidomic monitoring of a single intact embryo is therefore reported with potential applications in human and animal reproduction, cell development and stem cell research. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

17.
MS/MS is indispensable for the amino acid sequencing of peptides. However, its use is limited for peptides containing disulfide bonds. We have applied the reducing properties of 1,5-diaminonaphthalene (1,5-DAN) as a MALDI matrix to amino acid sequencing and disulfide bond mapping of human urotensin II possessing one disulfide bond, and human guanylin possessing two disulfide bonds. 1,5-DAN was used in the same manner as the usual MALDI matrices without any pre-treatment of the peptide, and MS/MS was performed using a matrix-assisted laser desorption/ionization quadrupole ion trap time-of-flight mass spectrometer (MALDI QIT TOFMS). The results demonstrated that MS/MS of the molecular ions reduced by 1,5-DAN provided a series of significant b-/y-product ions. All 11 amino acid residues of urotensin II were identified using 1,5-DAN, while only 5 out of 11 residues were identified using 2,5-dihydroxybenzoic acid (DHB); similarly 11 out of 15 amino acid residues of guanylin were identified using 1,5-DAN, while only three were identified using DHB. In addition, comparison of the theoretical and measured values of the mass differences between corresponding MS/MS product ions using 1,5-DAN and DHB narrowed down the possible disulfide bond arrangement candidates. Consequently, 1,5-DAN as a reductive matrix facilitates rapid amino acid sequencing and disulfide mapping for peptides containing disulfide bonds.  相似文献   

18.
Branched polyethylenimines (PEIs) with lower average molecular weights (600, 1200 and 1800 Da) have been studied by Electrospray Ionization (ESI) and Matrix‐Assisted Laser Desorption/Ionization (MALDI) mass spectrometry. In both, ESI and MALDI mass spectra, the main distribution arises from protonated PEI oligomers with NH2 end groups, [PEI + H]+, which are observed at m/z 43n + 18. A trace of sodium contamination in the PEI samples results in the presence of a series that appears at m/z 43n + 40 [PEI + Na]+. However, only the MALDI mass spectra show a [PEI + K]+ series at m/z 43n + 56, because of matrix contamination with potassium, and a series generated by condensation of the matrix with PEI at m/z 43n + 30. Collisionally activated dissociation tandem mass spectrometry (CAD (MS/MS)) of protonated PEI oligomers is shown to yield three fragment ion series bn, and Kn. The experiments have demonstrated the capabilities of these mass spectrometry techniques, along with CAD MS/MS to detect and characterize such polar synthetic polymers. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

19.
High‐resolution matrix‐assisted laser desorption/ionization (MALDI) time‐of‐flight mass spectrometry (TOF MS) was used for the analysis of the low‐molecular‐weight products from the photo‐oxidation of poly(3‐hexylthiophene) (P3HT) in solution and thin film. Eight new peak series were observed in the low‐mass range of the mass spectra of the products degraded in solution, and the formulas of the eight components were determined from the accurate mass. From SEC/MALDI‐TOF MS, two components were identified as the degraded products, and the other six components were derived from the fragmentation of the degraded products during the MALDI process. A mechanism for the formation of these components was proposed on the basis of the results of MALDI‐TOF MS. For the thin film degradation, a part of products in the solution degradation were observed, which supports that the oxidation of P3HT in solution and thin film proceeded in the same mechanism. This study shows that high‐resolution MALDI‐TOF MS is effective for the analysis of the low‐molecular‐weight products from P3HT photo‐oxidation and expected to be feasible for the degradation analyses of other polymers. Copyright © 2015 John Wiley & Sons, Ltd.  相似文献   

20.
Close deposition of the sample and external standard was used in axial matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOFMS) to achieve mass accuracy equivalent to that obtained with an internal standard across the entire MALDI plate. In this work, the sample and external standard were deposited by continuous deposition in separate traces, each approximately 200 micro m wide. The dependence of the mass accuracy on the distance between the sample and standard traces was determined across a MALDI target plate with dimensions of 57.5 mm x 57.0 mm by varying the gap between the traces from 100 micro m to 4 mm. During acquisition, two adjacent traces were alternately irradiated with a 200-Hz laser, such that the peaks in the resulting mass spectra combined the sample and external standard. Ion suppression was not observed even when the peptide concentrations in the two traces differed by more than two orders of magnitude. The five peaks from the external standard trace were used in a four-term mass calibration of the masses of the sample trace. The average accuracy across the whole plate with this method was 5 ppm when peaks of the sample trace had signal-to-noise ratios of at least 30 and the gap between the traces was approximately 100 micro m. This approach was applied to determining peptide masses of a reversed-phase liquid chromatographic (LC) separation of a tryptic digest of beta-galactosidase deposited as a long serpentine trace across the MALDI plate, with accuracy comparable to that obtainable using internal calibration. In addition, the eluent from reversed-phase LC separation of a strong cation-exchange fraction containing tryptic peptides from a yeast lysate along with the closely placed external standard was deposited on the MALDI plate. The data obtained in the MS and MS/MS modes on a MALDI-TOF/TOF mass spectrometer were combined and used in database searching with MASCOT. Since the significant score is a function of mass accuracy in the MS mode, database searching with high mass accuracy reduced the number of false positives and also added peptides which otherwise would have been eliminated at lower mass accuracy (false negatives).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号