首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
设计合成一系列具有不同取代基的苯甲酰萘(苯)胺衍生和,测定它们在非极性溶剂环己烷中的荧光发射光谱,发现系列合成产物具有双重荧光,其长滤发射具有电荷转移特性,其长波发射态能量与不同取代基的苯甲酰萘(苯)胺衍生物的失(得)电子能力,即给(受)体的氧化还原电位之间符合Weller方程。  相似文献   

2.
The syntheses of three new macrocycles composed of an acceptor (viologen) and a donor (dioxoaryl) are reported. These compounds exhibit intramolecular charge transfer and their X-ray analyses revealed that the aromatic systems are situated in parallel planes with a mean interplanar distance of 3.32 Å.  相似文献   

3.
Zhen-Chang Wen 《Tetrahedron》2004,60(49):11109-11115
A series of the intramolecular charge transfer (ICT) dual fluorescent receptors with anion binding site in the electron acceptor were designed and synthesized. These receptors exhibited dual fluorescence in acetonitrile and the charge transfer (CT) emission energy was found to correlate linearly with the Hammett constant of the substituent existing in the electron acceptor, which is the basis for anion sensing. Dual fluorescence of these receptors was found to be sensitive to the presence of anions such as fluoride and acetate and the receptors can be employed as ratiometric fluorescent sensors for anions.  相似文献   

4.
5.
Given facile synthetic route and excellent photo stability, excited state intramolecular proton transfer (ESIPT)-active luminous materials have gained more and more attention. Here, we focus on photo-induced excitation process and the ESIPT reaction process for the novel 5-benzothiazol-2-yl-6-hydroxy-2-methyl-isoindole-1,3-dione (HPIBT) molecule. On the level of chemical geometries and infrared spectra, we verify that O─H⋯N of HPIBT should be enhanced. We find that a proton is likely to be attracted by enhanced electronic densities around N, that is, charge transfer impetus ESIPT trend. Combing potential energy curves and searching for transition state, we clarify the ultrafast ESIPT mechanism of HPIBT due to a low barrier, which legitimately explains previous experimental characteristics.  相似文献   

6.
Viologen-benzocrown ether conjugate (1) was prepared, in which a phenyl unit in benzocrown ether was incorporated into the nitrogen atom of a bypiridinium unit through a sigma bond. 1 showed a yellow color associated with an intramolecular charge transfer (CT) that responds to alkali and alkaline earth metal ions, especially to Ca2+.  相似文献   

7.
赵为  张宝文  侯原军  曹怡 《中国化学》1998,16(6):499-508
A series of squarylium cyanine dyes (Sqs) were synthesized to explore their applications in functional devices.Preliminary investigation on the mechanism involved in these devices was carried out.Spectroscopic behavior of Sqs with porphyrin (P),8-hydroxyquinolium aluminum (Alq) and ruthenium bipyridyl complex (Ru(bipy)) in solution,in film and on nanocrystalline TiO2 was investigated,respectively.A mechanism including photoinduced energy transfer and charge transfer processes was suggested in the corresponding practical devices.By means of doping,a red organic electroluminescent device (ELD) using Sq-doped Alq as the emission layer (EML) has been developed,and the total light to electricity efficiency of nanocrystalline TiO2 electrode based on using Sq-doped Ru(bipy) as photosensitizer has been improved greatly in the whole visible region,particularly in the red area above 600 nm.  相似文献   

8.
9.
Quantum-chemical calculations with the time-dependent density function theory (TDDFT) have been carried out for 5-phenyl-5H-phenanthridin-6-one (PP). For this molecule, dual fluorescence and in- tramolecular charge transfer (ICT) were experimentally observed. The B3LYP functional with 6-311 G (2d, p) basis set has been used for the theoretical calculations. The solvent effects have been described within the polarizable continuum model (PCM). Ground-state geometry optimization reveals that the phenyl/phenanthridinone dihedral angle equals 90.0°, a nearly perpendicular structure. Vertical ab- sorption energy calculations characterize the lower singlet excited states both in gas phase and in solvents. It can be found that the lower excited states have locally excitation (LE) feature. Through constructing the potential energy curves of both isolated and solvated systems describing the LE→ICT reaction and fluorescence emission, we obtain the enthalpy difference ΔH between the LE and ICT states, energy barrier Ea, and energy difference δEFC, indicating the structural changes taking place during the ICT reaction. Potential curve and calculated emission energies for both isolated and sol- vated systems show a dual fluorescence phenomenon, consisting of a LE emission band and a red-shifted ICT band. Our calculations including the solvent effects indicate that the dual fluorescence is brought about by the change in molecular structure connected with the planarization of the twisted N-phenylphenanthridinone during the ICT reaction.  相似文献   

10.
Intramolecular charge transfer (ICT) behavior of trans-ethyl p-(dimethylamino)cinamate (EDAC) in various solvents has been studied by steady-state absorption and emission, picosecond time-resolved fluorescence spectroscopy and femtosecond transient absorption experiments as well as time-dependent density functional theory (TDDFT). Large fluorescence spectral shift in more polar solvents indicates an efficient charge transfer from the donor site to the acceptor moiety in the excited state compared to the ground state. The energy for 0,0 transition (ν0,0) for EDAC shows very good linear correlation with static solvent dielectric property. The relaxation dynamics of EDAC in the excited state can be effectively described by a “three state” model where, the locally excited (LE) state converts into the ICT state within 350 ± 100 fs. A combination of solvent reorganization and intramolecular vibrational relaxation within 0.5–6 ps populates the relaxed ICT state which undergoes fluorescence decay within few tens to hundreds of picoseconds.  相似文献   

11.
12.
Three (donor–π–acceptor)+ systems with a methyl pyridinium or quinolinium as the electron‐deficient group, a dimethyl amino as the electron‐donor group, and an ethylene or butadiene group as the spacer have been investigated in a joint spectroscopic and TD‐DFT computational study. A negative solvatochromism has been revealed in the absorption spectra, which implies a solution color change, and interpreted by considering the variation in the permanent dipole moment modulus and orientation upon photoexcitation. The fluorescence efficiency decreases upon increasing solvent polarity, in agreement with the excited‐state optimized geometries (planar in low‐polarity media and twisted in high‐polarity media). Femtosecond transient absorption has revealed the occurrence of a fast photoinduced intramolecular charge transfer (ICT) and the molecular factors that determine an efficient ICT. Considering the crucial role of the ICT in tuning the nonlinear optical (NLO) properties, these compounds can be considered promising NLO materials.  相似文献   

13.
14.
New triphenylacrylonitrile derivative (DPPA) with triphenylamine moiety as electron donor group has been synthesized. Its emission wavelengths were strongly affected by solvent polarity, indicating intramolecular charge transfer (ICT) transitions. It was found that DPPA was almost non-emissive in tetrahydrofuran (THF), and the emission could be intensified obviously when a great amount of H2O was added, illustrating aggregation induced emission property. It is interesting that the pristine crystal of DPPA emitted green light, and the ground made its emitting color to change into orange, which could be recovered under fumed with dichloromethane (DCM) vapor. The piezofluorochromic behavior might be switched reversibly under the stimulus of external force because of crystalline-amorphous phase transformation, which could be confirmed from the results of PXRD patterns and DSC curves in different solid states. This work might open a new strategy to provide a broad perspective for the development of AIE PFC materials.  相似文献   

15.
Protoporphyrin IX‐zinc oxide (PP‐ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and steady‐state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time‐resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible‐light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground‐state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond‐ to picosecond‐resolved studies.  相似文献   

16.
Experimental and theoretical methods were used to study newly synthesized thiophene-pi-conjugated donor-acceptor compounds, which were found to exhibit efficient intramolecular charge-transfer emission in polar solvents with relatively large Stokes shifts and strong solvatochromism. To gain insight into the solvatochromic behavior of these compounds, the dependence of the spectra on solvent polarity was studied on the basis of Lippert-Mataga models. We found that intramolecular charge transfer in these donor-acceptor systems is significantly dependent on the electron-withdrawing substituents at the thienyl 2-position. The dependence of the absorption and emission spectra of these compounds in methanol on the concentration of trifluoroacetic acid was used to confirm intramolecular charge-transfer emission. Moreover, the calculated absorption and emission energies, which are in accordance with the experimental values, suggested that fluorescence can be emitted from different geometric conformations. In addition, a novel S(2) fluorescence phenomenon for some of these compounds was also be observed. The fluorescence excitation spectra were used to confirm the S(2) fluorescence. We demonstrate that S(2) fluorescence can be explained by the calculated energy gap between the S(2) and S(1) states of these molecules. Furthermore, nonlinear optical behavior of the thiophene-pi-conjugated compound with diethylcyanomethylphosphonate substituents was predicted in theory.  相似文献   

17.
Lapatinib (LAP) is an anticancer drug, which is metabolized to the N- and O-dealkylated products (N-LAP and O-LAP, respectively). In view of the photosensitizing potential of related drugs, a complete experimental and theoretical study has been performed on LAP, N-LAP and O-LAP, both in solution and upon complexation with human serum albumin (HSA). In organic solvents, coplanar locally excited (LE) emissive states are generated; they rapidly evolve towards twisted intramolecular charge-transfer (ICT) states. By contrast, within HSA only LE states are detected. Accordingly, femtosecond transient absorption reveals a very fast switching (ca. 2 ps) from LE (λmax=550 nm) to ICT states (λmax=480 nm) in solution, whereas within HSA the LE species become stabilized and live much longer (up to the ns scale). Interestingly, molecular dynamics simulation studies confirm that the coplanar orientation is preferred for LAP (or to a lesser extent N-LAP) within HSA, explaining the experimental results.  相似文献   

18.
A new dual fluorescent N,N-dimethylaniline derivative, sodium 4-(N,N-dimethylamino)-benzenesulfonate (SDMAS), is reported. In SDMAS, the electron acceptor is linked to the phenyl ring via a sulfur atom at the para-position of the electron donor. It was found that SDMAS emits dual fluorescence only in highly polar solvent water but not in organic solvents such as formamide, methanol and acetonitrile. In organic solvents only a single-band emission at ca.360 nm was observed in the short wavelength region. The dual fluorescence of SDMAS in water was found at 365 and 475 nm, respectively. Introduction of organic solvent such as ethanol, acetonitrile, and 1,4-dioxane into aqueous solution of SDMAS leads to blue-shift and quenching of the long-wavelength emission. Measurements of steady-state and picosecond time-resolved fluorescence indicate that the long wavelength fluorescence is emitted from a charge transfer (CT) state that is populated from the locally excited (LE) state, with the latter giving off the  相似文献   

19.
A platinum(II) 2,2′:6′,2″-terpyridyl complex (2) with a hydroxylphenyl substituent on the terpyridyl ligand and a dimethylamino substituent on the phenylacetylide ligand was synthesized and characterized. Complex 2 exhibits a metal-to-ligand charge transfer (1MLCT) absorption band at ca. 410 nm and a ligand-to-ligand charge transfer (1LLCT) band at ca. 536 nm. It exhibits dual emission at ca. 450 nm and ca. 560 nm at room temperature when excited at 334 nm, which originates from the 1π,π* state and the 3MLCT/3π,π* state, respectively. Dramatic color change was observed for 2 with addition of acid and base. Its emission at 560 nm was enhanced in acidic solution and quenched in basic solution. The changes in absorption and emission could be attributed to the variation of the nature of the lowest excited state from LLCT to MLCT in acidic solution and to LLCT/ILCT at basic solution. The drastic color and emission intensity changes in acidic and basic solutions suggest that 2 could potentially be a colorimetric and luminescent acid/base sensor.  相似文献   

20.
Time‐resolved transient absorption and fluorescence spectroscopy with nano‐ and femtosecond time resolution were used to investigate the deactivation pathways of the excited states of distyrylfuran, thiophene and pyridine derivatives in several organic solvents of different polarity in detail. The rate constant of the main decay processes (fluorescence, singlet–triplet intersystem crossing, isomerisation and internal conversion) are strongly affected by the nature [locally excited (LE) or charge transfer (CT)] and selective position of the lowest excited singlet states. In particular, the heteroaromatic central ring significantly enhances the intramolecular charge‐transfer process, which is operative even in a non‐polar solvent. Both the thiophene and pyridine moieties enhance the S1→T1 rate with respect to the furan one. This is due to the heavy‐atom effect (thiophene compounds) and to the 1(π,π)*→3(n,π)* transition (pyridine compounds), which enhance the spin‐orbit coupling. Moreover, the solvent polarity also plays a significant role in the photophysical properties of these push–pull compounds: in fact, a particularly fast 1LE*→1CT* process was found for dimethylamino derivatives in the most polar solvents (time constant, τ≤400 fs), while it takes place in tens of picoseconds in non‐polar solvents. It was also shown that the CT character of the lowest excited singlet state decreased by replacing the dimethylamino side group with a methoxy one. The latter causes a decrease in the emissive decay and an enhancement of triplet‐state formation. The photoisomerisation mechanism (singlet/triplet) is also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号