首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In this study, we describe a mathematical model designed to allow for the determination of the mechanical relationship existing between soil characteristics and the primary design factors of a tracked vehicle, and to predict the tractive performance of this tracked vehicle on soft terrain. On the basis of the mathematical model, a computer simulation program (Tractive Performance Prediction Model for Tracked Vehicles; TPPMTV) was developed in this study. This model took into account the characteristics of the terrain, including the pressure-sinkage, the shearing characteristics, and the response to the repetitive loading, as well as the primary design parameters of the tracked vehicle. The efficacy of the developed model was then confirmed via comparison of the drawbar pulls of tracked vehicles predicted using the simulation program TPPMTV, with those determined as the result of traction tests. The results indicated that the predicted drawbar pulls, with the change in slip, were quite consistent with the ones measured in the traction test, for the changes in the weight of the vehicle, the initial track tension, and the number of roadwheels within the entire slip range. Thus, we concluded that the simulation program developed in this study, named TPPMTV, proved useful in the prediction of the tractive performance of a tracked vehicle, and that this system might be applicable to the design of a vehicle, possibly enabling a significant improvement in its functions.  相似文献   

2.
This paper describes an experimental study of tractive performance in deep snow, carried out with a new special skid steered tracked vehicle, developed by Bodin [1]. The vehicle design parameters studied include the influence of the ground clearance of the vehicle belly and the longitudinal location of the centre of gravity on tractive performance in deep snow, as well as the effect of initial track tension. The most important results from the test show that an increase in the ground clearance has a positive effect on the drawbar pull, originating from a greater increase in the thrust than in the track motion resistance and a slight decrease in the belly drag. Tests of the longitudinal location of the centre of gravity show that a location ahead of the midpoint of the track contact length is to be preferred. The drawbar pull increases with the centre of gravity moving forward. This is due to a reduced track motion resistance, a slight decrease in the belly drag and an almost constant vehicle thrust. The reason for the decreased track motion resistance and belly drag with the centre of gravity located ahead of the midpoint of the track contact length is a decreased vehicle trim angle.  相似文献   

3.
This paper describes a test-bed vehicle for studying the integration of the steering system of a wheeled vehicle with the drive system. The vehicle was produced in order to determine whether such an integrated system is practical; to investigate tractive performance compared to other steering-drive systems; and to determine under which conditions such a system has better performance. The integrated steering-drive system of the test-bed vehicle uses a computer to co-ordinate the independently driven wheel speeds of the drive system (which is also the primary steering system) with the steer angles of the non-driven steerable wheels to produce a beneficial secondary steering effect. The secondary steering system assists the primary steering system when side forces act on the vehicle, while producing minimal conflict. This concept can be applied to agricultural vehicles such as tractors, harvesters, mowers, sprayers and self-propelled windrowers. The test-bed vehicle is able to be configured for the following steering-drive systems types: open differential drive with steerable wheels, independent drive wheels with castors, locked differential drive with steerable wheels and a computer integrated steering-drive system. The capacity of the test-bed vehicle to be configured as described is a significant advantage when measuring tractive performance, as the results obtained will be more valid due to the vehicle parameters being the same.  相似文献   

4.
Multi-pass effect on off-road vehicle tractive performance   总被引:1,自引:0,他引:1  
The paper presents an analysis and qualitative and quantitative evaluation of the multi-pass effect on off-road vehicle tractive performance in different soils. A literature review and the results of this study indicated that to accurately predict a vehicle’s tractive performance, the multi-pass effect should be taken into account. A new method has been developed on how to calculate the effect in given soil and operating conditions. The method includes consecutive calculation of the tractive performance: (a) for the first vehicle pass using an analytical model with soil input including an initial soil parameters set, (b) for the following vehicle passes using the same analytical model with corresponding soil input for each pass which can be obtained using the new procedure.  相似文献   

5.
Skid-steered tracked vehicles are the favoured platform for unmanned ground vehicles (UGVs) in poor terrain conditions. However, the concept of skid-steering relies largely on track slippage to allow the vehicle to conduct turning manoeuvres potentially leading to overly high slip and immobility. It is therefore important to predict such vulnerable vehicle states in order to prevent their occurrence and thus paving the way for improved autonomy of tracked vehicles. This paper presents an analytical approach to track-terrain modelling and a novel traversability prediction simulator for tracked vehicles conducting steady-state turning manoeuvres on soft terrain. Traversability is identified by predicting the resultant track forces acting on the track-terrain interface and the adopted models are modified to provide an analytical generalised solution. The validity of the simulator has been verified by comparison with available data in the literature and through an in-house experimental study. The developed simulator can be employed as a traversability predictor and also as a design tool to test the performance of tracked vehicles with different vehicle geometries operating on a wide range of soil properties.  相似文献   

6.
Shear stress–displacement model is very important to evaluate the tractive performance of tracked vehicles. A test platform, where track segment shear test and plate load test can be performed in bentonite–water mixture, was built. Through analyzing existing literatures, two shear stress–displacement empirical models were selected to conduct verification tests for seafloor suitability. Test results indicate that the existing models may not be suitable for seafloor soil. To solve this problem, a new empirical model for saturated soft-plastic soil (SSP model) was proposed, and series shearing tests were carried out. Test results indicate that SSP model can describe mechanical behavior of track segment with good approximation in bentonite–water mixture. Through analyzing main external forces applied to test scaled model of seafloor tracked trencher, drawbar pull evaluation functions was deduced with SSP model; and drawbar pull tests were conducted to validate these functions. Test results indicate that drawbar pull evaluation functions was feasible and effective; from another side, this conclusion also proved that SSP model was effective.  相似文献   

7.
This workshop study program which was sponsored by the ISTVS Snow Mechanics Committee examined the problems of snow traction and methods of predicting vehicle mobility on snow. This study presents one aspect of the field prediction problem where a portable, hand-held instruments is used and prescribed by requirements for simplicity, portability and facility.  相似文献   

8.
In recent years, water disasters have increased in Japan. In water disaster, remote controlled vehicles which work for disaster recovery must run in water environment. Since underwater ground is likely to be soft, the vehicle has a risk of stuck. If a vehicle gets stuck at disaster sites, rescue work is difficult because it is not easily to access to that area. We must make a method for judging whether to run or not. For this purpose, we must quantitatively clarify the relationship between the trafficability and the strength, bearing capacity, etc. of underwater ground. We measured the cone index of underwater ground. From results, we confirmed that fragile layer was formed on the surface layer in underwater ground. We measured drawbar pull of a tracked carrier in test field. As a result, maximum drawbar pull of underwater ground was lower than on the ground. After slip occurs, drawbar pull of underwater ground was smaller than ground significantly.  相似文献   

9.
A study of the correlation between the measured and predicted vehicle performance over undistributed and preconditioned snow using the Nepean Tracked Vehicle Performance Model, NTVPM, has been carried out. It is shown that on undisturbed snow in Fernie, British Columbia, the performance of a BV 206 predicted by NTVPM correlates very well with measured performance obtained in the field. On preconditioned snow, there is also a reasonable correlation between the measured vehicle performance and predicted one using NTVPM. It is found that predictions of vehicle performance made by NTVPM using pressure-sinkage data obtained with the Swiss Rammsonde and with the bevameter are comparable. This indicates that the pressure-sinkage data obtained using the Rammsonde can be used as input to the NTVPM for predicting tracked vehicle performance over snow. It is shown that in comparison with an earlier version, NTVPM-85, the latest version of the Nepean Tracked Vehicle Performance Model, NTVPM-86, which takes into account fully the characteristics of roadwheel suspension systems, provides improved predictions of vehicle performance over snow where track sinkage is significant. It is suggested that the computer simulation model NTVPM, using pressure-sinkage data obtained by the Rammsonde as input, could form a useful interface with cone based models, such as the NATO Reference Mobility Model, to provide them with an additional capability of predicting tracked vehicle performance over snow.  相似文献   

10.
This paper deals with soil thrust exerted by a tracked vehicle. Measurements of the ground pressure beneath the tracks of a tracked vehicle were carried out and it was shown that the ground pressure distribution is approximately represented by discontinuous triangles which have their maxima under the roadwheels. The relationship between soil shear curve (shear stress or force-deformation curve) obtained from shear test and thrust curve (soil thrust-slip ratio curve) of the tracked vehicle is analyzed by using the above mentioned ground pressure distribution, and it is shown that there is a transformation law between both curves. Namely, the thrust curve due to soil shear under any wheel portion is given as a function of soil and vehicle parameters. Further, the reliability of the above method is confirmed experimentally.  相似文献   

11.
The objective of this study is to analyse the tractive and braking performance of a tractor travelling up and down a weak silty loam sloped terrain. The effects of track belt size on terrain-track system parameters were investigated experimentally, and the force and energy balances were clarified for the actual flexible tracked vehicle. The flexibility of the track belt has been precisely analysed as a function of track tension, loading and reloading properties of terrain, and contact pressure distributions. The results show that the optimum effective driving (or braking) force decreases with the increase of slope angle due to the decreasing vehicle weight component, while the thrust (or drag) decreases and the compaction resistance increases. The contact pressure distribution under the flexible track belt shows a triangular wavy pattern having peak values under each track roller. The shear resistance distribution has positive and negative peak values for the driving and braking states, respectively.  相似文献   

12.
13.
This study presents a developed hybrid electrical air-cushion tracked vehicle (HETAV) for the transportation operation of agricultural and industrial goods on the swamp peat terrain bearing capacity of 5 kN/m2. The vehicle’s design parameters are optimized by using the developed mathematical models which are made based on the kinematics and dynamics behaviors of the vehicle. A set of sensors are used with this vehicle to activate the air-cushion system and battery pack recharging system. The vehicle’s air-cushion system is protected by a novel-design auto-adjusting supporting system. The air-cushion dragging motion resistance is overcome with additional thrust which is developed by a propeller. The vehicle is equipped with the air-cushion system to make the vehicle ground contact pressure 5 kN/m2.  相似文献   

14.
How to calculate the effect of soil conditions on tractive performance   总被引:1,自引:0,他引:1  
The paper presents an analysis and quantitative evaluation of the effect of soil conditions on tractive performance of off-road wheeled and tracked vehicles. The results of this study indicated that to accurately calculate the tractive performance of a vehicle in a given soil condition, soil properties and parameters and their changes as functions of soil moisture content and density should be taken into account. An effective Tractive Performance Analytical (TPA) model which takes into consideration the effect of soil conditions on tractive performance of the vehicles is developed. The TPA model uses invariant soil parameters that can be given or measured before the calculations by routine methods of classical soil mechanics. Soil parameters can also be obtained by recommended empirical equations using four physical soil parameters measured in the field with hand held instruments without time consuming and costly plate or vehicle tests. The model was validated in different soil conditions and compared with other models used in terramechanics for tractive performance predictions. The paper includes also an analysis of capabilities and limitations of the observed models.  相似文献   

15.
This paper describes the application of a computer simulation model, known as NTVPM-85, to the evaluation of the effects of design parameters on the performance of tracked vehicles over various types of terrain. It demonstrates that the computer simulation model is a useful tool for the vehicle designer and the user in the evaluation of competing designs and in the examination of the effects on performance of design modifications and terrain conditions.  相似文献   

16.
Tire tractive performance, soil behavior under the traffic, and multi-pass effect are among the key topics in the research of vehicle off-road dynamics. As an extension of the study (He et al., 2019a), this paper documents the testing of a tire moving on soft soil in the traction mode or towing mode, with a single pass or multiple passes, and presents the testing results mainly from the aspects of tire tractive performance parameters, soil behavior parameters, and multi-pass effect on these parameters. The influence of tire inflation pressure, initial soil compaction, tire normal load, or the number of passes on the test data has been analyzed; for some of the tests, the analysis was completed statistically. A multi-pass effect phenomenon, different from any phenomenon recorded in the available existing literature, was discovered and related to the ripple formation and soil failure. The research results of this paper can be considered groundwork for tire off-road dynamics and the development of traction controllers for vehicles on soft soil.  相似文献   

17.
The prediction of tractive performance on soil surfaces   总被引:5,自引:0,他引:5  
A new approach to the traction prediction equation is described. The proposed equation uses the soil deformation modulus and physical properties of agricultural tyres as parameters. The novel features of this approach include the assumption of a non-linear shear stress distribution and change in the value of soil deformation modulus with the normal stress. A model which suggests a relationship between the contact patch area and the soil deformation modulus is also introduced. The prediction equation was compared with the widely used Wismer and Luth equation and measured data obtained by Wittig. The proposed approach results in an improvement over Wismer and Luth in the prediction of traction and it also involves minimal testing.  相似文献   

18.
The point of departure of the present work may be either an interest in vehicle vibrations themselves, or in ground vibrations and terrain damage due to vehicles traveling off-road. The vibrations of a vehicle traversing dry, soft terrain, which is either rough or undulating, may be significantly modified by the dynamic interaction of the vehicle with the soil, particularly due to losses of energy by soil compaction and as elastic waves. The present work provides a prediction methodology for both vehicle and soil vibrations, accounting for the effects mentioned above. An expedient linear method is compared to a rheologically-based non-linear method. In the linear method, the soil compaction is incorporated as a loss factor in the dynamic stiffness of the otherwise elastic half-space; the imaginary part of that dynamic stiffness already includes the effects of wave damping. The non-linear model treats the compaction using a general rheological model for soils exhibiting both viscous and thixotropic effects, and requires iterative solution. A key feature of the latter model is the hypothesis that the stress distribution may be approximately regarded as quasi-static when calculating compaction losses; that approximation is expected to hold at low frequencies, since the P-wavelength in the soil is then much greater than the dimensions of the zone in which most compaction occurs. The methods predict that the soil compaction and excited ground vibrations have maxima at the vehicle bounce and hop resonances, and at high frequencies at which the Rayleigh wavelength approaches the order of the contact patch diameter. Moreover, sufficiently soft, compactable soils, but fully realizable in nature, control the vehicle response at the hop resonance, and possibly also at the bounce resonance.  相似文献   

19.
Longitudinal dynamics of a tracked vehicle: Simulation and experiment   总被引:1,自引:0,他引:1  
In recent years virtual dynamic system simulation has become very important in the design and development stage, as new strategies can be examined without expensive measurements and with reduced time. This paper describes the development of a simulation model for transient analysis of the longitudinal dynamics of a heavy tracked vehicle. The driving inputs for this simulation model are obtained from a powertrain model. The main elements of the powertrain include the engine, Torque Converter (TC), transmission and drivetrain. Here the engine is modeled based on the engine maps from steady-state experiments. The TC is modeled based on its characteristic map from experiments. A fairly simple transmission model is used which is based on static gear ratios assuming small shift times. The final drivetrain model however includes the rotational dynamics of the sprocket. The simulation model developed is validated by comparing the predicted values with the measured data from experiments. The results have demonstrated that the developed model is able to predict fairly accurately the acceleration and braking performance of the heavy tracked vehicle on both soft and hard terrain.  相似文献   

20.
On the numerical solution of tracked vehicle dynamic equations   总被引:1,自引:0,他引:1  
In this investigation, the solution of the nonlinear dynamic equations of the multibody tracked vehicle systems are obtained using different procedures. In the first technique, which is based on the augmented formulation that employes the absolute Cartesian coordinates and Lagrange multipliers, the generalized coordinate partitioning of the constraint Jacobian matrix is used to determine the independent coordinates and the associated independent differential equations. An iterative Newton-Raphson algorithm is used to solve the nonlinear constraint equations for the dependent variables. The numerical problems encountered when one set of independent coordinates is used during the simulation of large scale tracked vehicle systems are demonstrated and their relationship to the track dynamics is discussed. The second approach employed in this investigation is the velocity transformation technique. One of the versions of this technique is discussed in this paper and the numerical problems that arise from the use of inconsistent system of kinematic equations are reported. In the velocity transformation technique, the tracked vehicle system is assumed to consist of two kinematically decoupled subsystems; the first subsystem consists of the chassis, the rollers, the sprocket and the idler, while the second subsystem consists of the track which is represented as a closed kinematic chain that consists of rigid links connected by revolute joints. It is demonstrated that the use of one set of recursive equations leads to numerical difficulties because of the change in the track configuration. Singular configurations can be avoided by repeated changes in the recursive equations. The sensitivity of the predictor-corrector multistep numerical integration schemes to the method of formulating the state equations is demonstrated. The numerical results presented in this investigation are obtained using a planner tracked vehicle model that consists of fifty four rigid bodies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号