首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The onset of thermal convection in a 2D porous box is investigated analytically. The lateral walls are partly heat conducting and partly penetrative. The top and bottom are impermeable and perfect heat conductors. The linear stability problem is solved only for the symmetric configuration of equal conditions at each sidewall. The problem is degenerate when the parameters of semi-conduction and semi-penetration coincide. The degenerate problem has one symmetric and one antisymmetric eigenfunctions, and the cell width varies with minimum cell width in the middle. Our primary model for the partly penetrative wall is a thin and highly permeable layer near a closed wall. We also study a secondary model of a partly penetrative wall, with a thin layer of small permeability near a hydrostatic reservoir.  相似文献   

2.
Mixed convection in power-law type non-Newtonian fluids along an isothermal vertical cylinder in porous media is studied. The problem is solved by means of a finite difference method for the case of uniform wall temperature. Results for the details of the velocity and temperature fields as well as the Nusselt number have been presented. The viscosity index ranged from 0.5–1.5.  相似文献   

3.
This work presents a boundary layer analysis for the free convection heat transfer from a vertical cylinder in bidisperse porous media with constant wall temperature. A boundary layer analysis and the two-velocity two-temperature formulation are used to derive the nonsimilar governing equations. The transformed governing equations are solved by the cubic spline collocation method to yield computationally efficient numerical solutions. The effects of inter-phase heat transfer parameter, modified thermal conductivity ratio, and permeability ratio on the heat transfer and flow characteristics are studied. Results show that an increase in the modified thermal conductivity ratio and the permeability ratio can effectively enhance the free convection heat transfer of the vertical cylinder in a bidisperse porous medium. Moreover, the thermal nonequilibrium effects are strong for low values of the inter-phase heat transfer parameter.  相似文献   

4.
An analytical study is made of the convective flow field produced when a warm cylinder maintained at a fixed temperature above freezing is buried in saturated frozen porous medium. The flow field is shown to have a double cell pattern due to the density inversion of water at ~ 4°C, with downward convection of heat dominating at cylinder temperatures of below ~ 10°C and upward heat convection dominating at temperatures greater than this. The analysis uses a perturbation technique to determine the first-order convective correction to the flow and temperature fields around the cylinder for a quasi-static case. It demonstrates that the porous medium permeability and the cylinder temperature are the dominant factors in determining the point at which convection heat transfer becomes significant, with convection expected to be insignificant for Darcy permeabilies lower than 10−5 m/s. The analysis also gives an indication of the rates of thawing occurring in different directions without resorting to numerical methods. The practical implications of a thawing pattern significantly different to that predicted by conduction theory only are discussed briefly with respect to the problem of differential thaw settlement of arctic pipelines.  相似文献   

5.
In this paper, the problem of fully developed forced convection in a parallel-plate channel partly filled with a homogeneous porous material is considered. The porous material is attached to the walls of the channel, while the center of the channel is occupied by clear fluid. The flow in the porous material is described by a nonlinear Brinkman–Forchheimer-extended Darcy equation. Utilizing the boundary-layer approach, analytical solutions for the flow velocity, the temperature distribution, as well as for the Nusselt number are obtained. Dependence of the Nusselt number on several parameters of the problem is extensively investigated.  相似文献   

6.
The problem of natural convection from a horizontal cylinder in a narrow gap and in a porous medium is solved both theoretically and experimentally. An integral method for calculating heat transfer from the cylinder for constant flux on its surface was suggested. Numerical analysis clarified the role of regime and geometrical factors. It is shown that natural convection from a cylinder in a porous medium can be modeled by a Hele Shaw cell. Kutateladze Institute of Thermal Physics, Siberian Division, Russian Academy of Sciences, Novosibirsk 630090. Translated from Prikladnaya Mekhanika i Tekhnicheskaya Fizika, Vol. 40, No. 1, pp. 140–150. January–February, 1999.  相似文献   

7.
This paper investigates the onset of convection in a vertical cylinder occupied by a saturated porous medium of vertically heterogeneous permeability. The flow is induced by an applied vertical temperature gradient and an imposed solute concentration gradient. The main interest of this paper is studying the effect of vertical throughflow on the onset of instability in this system. The study is performed using linear stability theory. The problem is of considerable interest for hydrological and geophysical situations.  相似文献   

8.
This paper extends the existing studies of heat convection by an external flow impinging upon a flat porous insert to that on a circular cylinder inside a porous medium. The surface of the cylinder is subject to constant temperature and can include uniform or non-uniform transpiration. These cylindrical configurations are introduced in the analyses of stagnation-point flows in porous media for the first time. The equations governing steady transport of momentum and thermal energy in porous media are reduced to simpler nonlinear differential equations and subsequently solved numerically. This reveals the dimensionless velocity and temperature fields of the stagnation-point flow, as well as the Nusselt number and shear stress on the surface of the cylinder. The results show that transpiration on the surface of the cylinder and Reynolds number of the external flow dominate the fluid dynamics and heat transfer problems. In particular, non-uniform transpiration is shown to significantly affect the thermal and hydrodynamic responses of the system in the circumferential direction. However, the permeability and porosity of the porous medium are found to have relatively smaller influences.  相似文献   

9.
In this article, free convection heat transfer over a vertical cylinder with variable surface temperature distributions in a porous medium is analyzed. It is assumed that the fluid and solid phases are not in local thermal equilibrium and, therefore, a two-temperature model of heat transfer is applied. The coupled momentum and energy equations are presented and then they are transformed into ordinary differential equations. The similarity equations are solved numerically. The resulting velocity, streamlines, temperature distributions for fluid and solid phases are shown for different values of parameters entering into the problem. The calculated values of the local Nusselt numbers for both solid and fluid phases are also shown.  相似文献   

10.
Adopting a two-temperature and two-velocity model, appropriate to a bidisperse porous medium (BDPM) proposed by Nield and Kuznetsov (2008), the classical steady, mixed convection boundary layer flow about a horizontal, isothermal circular cylinder embedded in a porous medium has been theoretically studied in this article. It is shown that the boundary layer analysis leads to expressions for the flow and heat transfer characteristics in terms of an inter-phase momentum parameter, a thermal diffusivity ratio, a thermal conductivity ratio, a permeability ratio, a modified thermal capacity ratio, and a buoyancy or mixed convection parameter. The transformed partial differential equations governing the flow and heat transfer in the f-phase (the macro-pores) and the p-phase (the remainder of the structure) are solved numerically using a very efficient implicit finite-difference technique known as Keller-box method. A good agreement is observed between the present results and those known from the open literature in the special case of a traditional Darcy formulation (monodisperse system).  相似文献   

11.
This paper presents a large eddy simulation of forced convection heat transfer in the flow around a surface-mounted finite-height circular cylinder. The study was carried out for a cylinder with height-to-diameter ratio of 2.5, a Reynolds number based on the cylinder diameter of 44 000 and a Prandtl number of 1. Only the surface of the cylinder is heated while the bottom wall and the inflow are kept at a lower fixed temperature. The approach flow boundary layer had a thickness of about 10% of the cylinder height. Local and averaged heat transfer coefficients are presented. The heat transfer coefficient is strongly affected by the free-end of the cylinder. As a result of the flow over the top being downwashed behind the cylinder, a vortex-shedding process does not occur in the upper part, leading to a lower value of the local heat transfer coefficient in that region. In the lower region, vortex-shedding takes place leading to higher values of the local heat transfer coefficient. The circumferentially averaged heat transfer coefficient is 20 % higher near the ground than near the top of the cylinder. The spreading and dilution of the mean temperature field in the wake of the cylinder are also discussed.  相似文献   

12.
A theoretical study of conjugate natural convection and film condensation in porous media is reported. The natural convection phenomenon takes place along one side of a vertical impermeable wall and the condensation phenomenon along the other side. This wall constitutes the interface between two spaces filled with fluid-saturated porous media. The flow in both porous spaces is modelled on the basis of the Brinkman-modified Darcy momentum equation which satisfies the condition of zero velocity on a solid boundary. The temperature and flow fields in the porous medium are completely determined in the natural convection side as well as in the condensation side of the wall. In addition, the dependence of the wall heat flux and temperature distributions on height and on a number of dimensionless groups relevant to the problem is thoroughly documented. Important results pertinent to the impact of the problem parameters on the overall heat leak from the condensation space to the natural convection space are also reported. These results are presented with the help of the Nusselt number. Finally, the effect of the wall thermal resistance on the heat and fluid flow characteristics of the system is determined.  相似文献   

13.
A numerical study of the steady conjugate free convection over a vertical slender, hollow circular cylinder with the inner surface at a constant temperature and embedded in a porous medium is reported. The governing boundary layer equations for the fluid-saturated porous medium over the cylinder along with the one-dimensional heat conduction equation for the cylinder are cast into dimensionless form, by using a non-similarity transformation. The resulting non-similarity equations with their corresponding boundary conditions are solved by using the Keller box method. Emphasis is placed on the effects caused by the wall conduction parameter, p, and calculations have covered a wide range of this parameter. Heat transfer results including the temperature profiles, the interface temperature profiles and the local Nusselt number are presented. Received on 17 November 1997  相似文献   

14.
The present study is intended to study heat and mass transfer in a vertical annular cylinder embedded with saturated porous medium. The inner surface of cylinder is maintained at uniform wall temperature and uniform wall concentration. The governing partial differential equations are non-dimensionalised and solved by using finite element method (FEM). The porous medium is discritised using triangular elements with uneven element size. Large number of smaller-sized elements are placed near the walls of the annulus to capture the smallest variation in solution parameters. The results are reported for both aiding and opposing flows. The effects of various non-dimensional numbers such as buoyancy ratio, Lewis number, Rayleigh number, aspect ratio, etc on heat and mass transfer are discussed. The temperature and concentration profiles are presented.  相似文献   

15.
Fluid flow and heat transfer around and through a porous cylinder is an important issue in engineering applications. In this paper a numerical study is carried out for simulating the fluid flow and forced convection heat transfer around and through a square diamond-shaped porous cylinder. The flow is two-dimensional, steady, and laminar. Conservation laws of mass, momentum, and heat transport equations are applied in the clear region and Darcy–Brinkman–Forchheimer model for simulating the flow in the porous medium has been used. Equations with the relevant boundary conditions are numerically solved using a finite volume approach. In this study, Reynolds and Darcy numbers are varied within the ranges of $1<Re<45$ and $10^{-6}<Da<10^{- 2}$ , respectively. The porosity $(\varepsilon )$ is 0.5. This paper presents the effect of Reynolds and Darcy numbers on the flow structure and heat transfer characteristics. Finally, these parameters are compared among solid and porous cylinder. It was found that the drag coefficient decreases and flow separation from the cylinder is delayed with increasing Darcy number. Also the size of the thermal plume decreases by decreasing Darcy number.  相似文献   

16.
Transport in Porous Media - This study numerically analyzed the Arrhenius activation energy effect on free convection about a permeable horizontal cylinder in porous media. The surface of the...  相似文献   

17.
Steady mixed convection boundary layer flow from an isothermal horizontal circular cylinder embedded in a porous medium filled with a nanofluid has been studied for both cases of a heated and cooled cylinder. The resulting system of nonlinear partial differential equations is solved numerically using an implicit finite-difference scheme. The solutions for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction φ and the mixed convection parameter λ. Three different types of nanoparticles are considered, namely Cu, Al2O3 and TiO2. It is found that for each particular nanoparticle, as the nanoparticle volume fraction φ increases, the magnitude of the skin friction coefficient decreases, and this leads to an increase in the value of the mixed convection parameter λ which first produces no separation. On the other hand, it is also found that of all the three types of nanoparticles considered, for any fixed values of φ and λ, the nanoparticle Cu gives the largest values of the skin friction coefficient followed by TiO2 and Al2O3. Finally, it is worth mentioning that heating the cylinder (λ > 0) delays separation of the boundary layer and if the cylinder is hot enough (large values of λ > 0), then it is suppressed completely. On the other hand, cooling the cylinder (λ < 0) brings the boundary layer separation point nearer to the lower stagnation point and for a sufficiently cold cylinder (large values of λ < 0) there will not be a boundary layer on the cylinder.  相似文献   

18.
We consider the nature of thermally stratified flow in a closed cylinder rotating about the direction of gravity under conditions appropriate for terrestrial laboratory experiments. Motion is driven by centrifugal buoyancy, with outflow near the cold disk and inflow near the hot disk. Although similarity solutions for the infinite disk open-geometry problem exist and are easily found, even analytically in certain limits, there remain questions about the applicability of these spatially simplified models in a closed geometry with a vertical sidewall. This paper compares theoretical self-similar core solutions with computational simulations constructed to satisfy a wide range of sidewall thermal boundary conditions; insulating, conducting (with a linear temperature profile up the wall), hot (isothermal), or cold. The width of penetration of sidewall influence in toward the axis of rotation depends on the sidewall thermal boundary condition. However, as the cylinder radius is increased for a fixed height, a substantial region of the container about the axis is accurately described by the thermocline solutions of the theory. The non-self-similar region at large radius can include separation of the lower outflow boundary layer, a feature not evident in previous studies of this problem. Received 8 June 1999 and accepted 12 December 1999-->  相似文献   

19.
方柱绕流的数值模拟   总被引:6,自引:0,他引:6  
童兵  祝兵  周本宽 《力学季刊》2002,23(1):77-81
采用有限差分法,对雷诺数为2.2×10~4的方柱绕流进行了大涡模拟(简称LES)。运用时间分裂控制(Split-Operator)法,将N-S方程分为对流步、扩散步和传播步。对Smagorinsky假设在近壁区的发散问题用两层模型进行处理。对流项用迎风—中心差分格式模拟,压力方程用SOR法迭代求解。计算得到的沿对称线的时均顺流向速度与文献上的实验结果进行了比较,结果吻合较好,同时还对绕方柱流的流场结构进行了分析研究。  相似文献   

20.
The steady mixed convection boundary-layer flow on a vertical circular cylinder embedded in a porous medium filled by a nanofluid is studied for both cases of a heated and a cooled cylinder. The governing system of partial differential equations is reduced to ordinary differential equations by assuming that the surface temperature of the cylinder and the velocity of the external (inviscid) flow vary linearly with the axial distance x measured from the leading edge. Solutions of the resulting ordinary differential equations for the flow and heat transfer characteristics are evaluated numerically for various values of the governing parameters, namely the nanoparticle volume fraction ${\phi}$ , the mixed convection or buoyancy parameter ?? and the curvature parameter ??. Results are presented for the specific case of copper nanoparticles. A critical value ?? c of ?? with ?? c <?0 is found, with the values of | ?? c| increasing as the curvature parameter ?? or nanoparticle volume fraction ${\phi}$ is increased. Dual solutions are seen for all values of ?? >??? c for both aiding, ?? >?0 and opposing, ?? <?0, flows. Asymptotic solutions are also determined for both the free convection limit ${(\lambda \gg 1)}$ and for large curvature parameter ${(\gamma \gg 1)}$ .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号