首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The diffusion deposition of submicron aerosol particles in model filters consisting of fibers covered with permeable porous shells is studied. An ordered system of parallel cylinders arranged perpendicular to the flow is used as a model filter. The results of calculations are given for the dependences of the capture coefficient on the shell radius, the shell permeability, the packing density of the filters, the particle radius, and the flow velocity. Calculations are performed within a wide range of Peclet numbers. It is shown that the capture coefficient and the quality criterion γ of a filter increase with the diffusion mobility of particles and shell permeability, as well as that the dependence of the quality criterion on the radius of permeable shells has a maximum. It is also shown that the capture coefficients for fibers with porous shells, calculated using the cell model and the isolated row of fibers, almost coincide with one another.  相似文献   

2.
The effect of gas slip at fibers on the drag to a flow and the deposition of submicron particles in model filters with a tree-dimensional flow field has been considered. The average values of the drag force and the efficiency of diffusion collection of particles with finite sizes in a double hexagonal three-dimensional model filter taken as a standard uniform filter have been calculated as depending on the packing density of fibers and the Knudsen number. It has been shown that, in the region of the sizes of the most penetrating particles, under preset conditions, and at specified filter parameters, the obtained collection efficiency values agree with the results of calculations performed by empirical formulas for a model fan filter. Moreover, formulas derived for a planar flow taking into account the slip effect are applicable to highly porous filters.  相似文献   

3.
The diffusion deposition of nanoparticles is studied from a flow at low Reynolds numbers in model filters composed of permeable circular porous fibers. The field of particle concentration is calculated and the capture coefficient is determined for a cell, as well as the isolated row of parallel fibers within a wide range of Peclet numbers (Pe) depending on the fiber permeability. It is shown that at Pe > 1, the diffusion capture coefficient η increases with permeability, while at Pe → ∞, it tends toward the limiting value, which is equal to the gas flow rate through the porous fiber. The capture coefficients calculated from a cell model and for a row of fibers are almost equal to each other. The diffusion deposition of aerosol particles in the highest penetration range is calculated with an allowance for their finite sizes and it is shown that the radii of most penetrable particles decrease with an increase in fiber permeability.  相似文献   

4.
The flow of viscous liquid in the porous medium formed by cylindrical fibers coated with a fractal porous adlayer is considered. Based on the Happel-Brenner cell method, the hydrodynamic permeability of a medium is calculated using the Brinkman equations. The analysis is performed for boundary conditions on cell surfaces of four types corresponding to the Happel, Kuwabara, Kvashnin, and Cunningham models. Different (transversal, longitudinal, and random) orientations of fibers with respect to liquid flow are considered.  相似文献   

5.
The problem solved in this study concerns steady-state flow of a viscous incompressible liquid at low Reynolds numbers in a model filter consisting of parallel cylinders with porous permeable shells. Both a separate row and lattices (square and hexagonal) of cylinders directed perpendicularly to the flow are considered. The flow field outside and inside the porous shell is found from the solutions to the Stokes and Brinkman equations. The drag force and the filtration efficiency are determined both as functions of the ratio between the cylinder diameter and the distance between the axes of adjacent cylinders and as functions of the thickness and permeability of the shells. The cell model is shown to be applicable for describing the flow field in a hexagonal lattice of cylinders with porous shells within a wide range of packing densities. Original Russian Text ? V.A. Kirsh, 2006, published in Kolloidnyi Zhurnal, 2006, Vol. 68, No. 2, pp. 198–206.  相似文献   

6.
7.
Sedimentation and electrophoresis of porous colloid complex; a colloidal floc and a colloidal particle covered with adsorbed polyelectrolytes are visited to examine the characteristic length of the transport phenomena. In the sedimentation, the overall size of a floc is dominative in the determination of Stokes drag, while the permeability is determined by the largest pore in the floc. This picture is important when break-up of flocs in a turbulent flow is considered. When a colloidal particles is coated with polyelectrolytes, the characteristic length for diffusion is that of the diameter of colloidal particle plus protruding part of polymer chain adsorbed onto the particle. On the other hand, when the porous colloid complex is placed in the electric field, fluid surrounding the complex can easily penetrate into the complex by means of electro-osmosis. The diffusive part of electric double layer located inside of the complex is the source of strong driving force of this osmotic flow. Flow generated in this regime can be treated as a sort of shear driven. The characteristic length scale for transport phenomena is the Debye length or the distance between charged segments. These lengths are much shorter than the case of sedimentation and Brownian diffusion.  相似文献   

8.
The calculation is implemented for the fiber collection efficiencies due to diffusion of nanoparticles in model filters, i.e., separate rows of fibers with an elliptic cross section located normal to the flow at different orientations of the ellipse axes with respect to the flow. The Stokes flow field in the system of the fibers is found by the method of fundamental solutions. The concentration field of Brownian particles and the efficiency of their deposition onto the fibers are determined from the numerical solution of the equation for the convective diffusion. The dependence of the capture coefficient on the Peclet number for elliptic fibers is shown to have the form η = APe−m, where exponent m changes from 2/3 to 3/4 at the parallel and normal orientation of the major axes of the ellipses with respect to the flow, respectively. It is shown that, from the viewpoint of aerosol nanoparticle capture, the best filters are those in which the fibers have a maximum midsection at the same cross-sectional area.  相似文献   

9.
The peculiarities of the hydrodynamic flow field and diffusion deposition of nanoparticles in filtration layers of nanofibers obtained by spraying a polymer solution in an electric field are considered. The main attention is focused on the effect of doubled nanofibers or pairs of parallel fibers that result from longitudinal splitting of charged jets on the hydrodynamic characteristics. The calculations are performed for a periodical row of doubled parallel fibers oriented normal to the flow. The flow field and the rate of nanoparticle deposition in the row are investigated as dependences on the distances between the pairs of the fibers, interfiber distances in pairs, orientation of the pairs relative to the direction of a flow, and the relations between fiber diameters in the pairs. The equations for the flow of a viscous incompressible liquid are solved under the Stokes approximation employing the method of fundamental solutions, and the stream functions, fields of velocities, and drag forces acting upon the fibers are determined. For the found flow fields, the coefficients of diffusion capture are determined by the numerical solution of the convective diffusion equation. It is established that, when fibers are drawn together in pairs to their contact in a rarefied row, the drag force decreases twofold. This result agrees with experimental data and the analytical solution for the constrained flow around pairs of similar fibers in a rarefied row.  相似文献   

10.
High‐temperature, stable core–shell catalysts for ammonia decomposition have been synthesized. The highly active catalysts, which were found to be also excellent model systems for fundamental studies, are based on α‐Fe2O3 nanoparticles coated by porous silica shells. In a bottom‐up approach, hematite nanoparticles were firstly obtained from the hydrothermal reaction of ferric chlorides, L ‐lysine, and water with adjustable average sizes of 35, 47, and 75 nm. Secondly, particles of each size could be coated by a porous silica shell by means of the base‐catalyzed hydrolysis of tetraethylorthosilicate (TEOS) with cetyltetramethylammonium bromide (CTABr) as porogen. After calcination, TEM, high‐resolution scanning electron microscopy (HR‐SEM), energy‐dispersive X‐ray (EDX), XRD, and nitrogen sorption studies confirmed the successful encapsulation of hematite nanoparticles inside porous silica shells with a thickness of 20 nm, thereby leading to composites with surface areas of approximately 380 m2 g?1 and iron contents between 10.5 and 12.2 wt %. The obtained catalysts were tested in ammonia decomposition. The influence of temperature, iron oxide core size, possible diffusion limitations, and dilution effects of the reagent gas stream with noble gases were studied. The catalysts are highly stable at 750 °C with a space velocity of 120 000 cm3 gcat?1 h?1 and maintained conversions of around 80 % for the testing period time of 33 h. On the basis of the excellent stability under reaction conditions up to 800 °C, the system was investigated by in situ XRD, in which body‐centered iron was determined, in addition to FeNx, as the crystalline phase under reaction conditions above 650 °C.  相似文献   

11.
Porous electrodes have shown high performance in industrial electrochemical processes and redox flow batteries for energy storage. These materials offer great advantages over planar electrodes in terms of larger surface area, superior space time yield and enhanced mass transport. In this work, a highly ordered porous stainless steel structure was manufactured by 3D-printing and coated with nickel from an acidic bath by electrodeposition in a divided rectangular channel flow cell. Following the electrodeposition, the volumetric mass transport coefficient of this electrode was determined by the electrochemical reduction of 1.0×10−3 mol dm−3 of ferricyanide ions by linear sweep voltammetry and chronoamperometry. The convection diffusion characteristics are compared with other geometries to demonstrate the novelty and the advantages of 3D-printed porous electrodes in electrochemical flow reactors. Robust porous electrodes with tailored surface area, composition, volumetric porosity and flow properties are possible.  相似文献   

12.
In this paper, we have developed a method to produce poly(lactic- co-glycolic acid) (PLGA) microfibers within a microfluidic chip for the generation of 3D tissue engineering scaffolds. The synthesis of PLGA fibers was achieved by using a polydimethylsiloxane (PDMS)-based microfluidic spinning device in which linear streams of PLGA dissolved in dimethyl sulfoxide (DMSO) were precipitated in a glycerol-containing water solution. By changing the flow rate of PLGA solution from 1 to 50 microL/min with a sheath flow rate of 250 or 1000 microL/min, fibers were formed with diameters that ranged from 20 to 230 microm. The PLGA fibers were comprised of a dense outer surface and a highly porous interior. To evaluate the applicability of PLGA microfibers generated in this process as a cell culture scaffold, L929 fibroblasts were seeded on the PLGA fibers either as-fabricated or coated with fibronectin. L929 fibroblasts showed no significant difference in proliferation on both PLGA microfibers after 5 days of culture. As a test for application as nerve guide, neural progenitor cells were cultured and the neural axons elongated along the PLGA microfibers. Thus our experiments suggest that microfluidic chip-based PLGA microfiber fabrication may be useful for 3D cell culture tissue engineering applications.  相似文献   

13.
Gold nanoparticles have been conformally coated with amorphous silica (using a sol-gel method) and then an organic polymer (via surface-grafted, atom transfer radical polymerization) to form spherical colloids with a core-double-shell structure. The thickness of silica and polymer shells could be conveniently controlled in the range of tens to several hundred nanometers by changing the concentration of the reagent and/or the reaction time. Selective removal of the silica layer (through etching in aqueous HF) led to the formation of hollow polymer beads containing movable gold cores. This new form of core-shell particles provides a unique system for measuring the feature size and transport property associated with hollow particles. In one demonstration, we showed that the thickness of a closed polymer shell could be obtained by mapping the electrons backscattered from the core and shell. In another demonstration, the plasmon resonance band of the gold cores was used as an optical probe to follow the diffusion kinetics of chemical reagents across the polymer shells.  相似文献   

14.
Kirsh  V. A.  Kirsh  A. A. 《Colloid Journal》2021,83(3):318-325
Colloid Journal - The deposition of aerosol particles in a filter composed of fibers coated with highly porous layers of radially oriented needles and the deposition of needle-coated particles onto...  相似文献   

15.
The preparation and characteristics of solid-phase microextraction (SPME) fibers coated with Carbowax 20M ormosil (organically modified silica) are described here. Raw fused silica fibers were coated with Carbowax 20M-modified silica using sol-gel process. Scanning electron micrographs of fibers revealed a highly porous, sponge-like coating with an average thickness of (8 +/- 1) microm. The sol-gel Carbowax fibers were compared to commercial fibers coated with 100 microm polydimethylsiloxane (PDMS) and 65 microm Carbowax-divinylbenzene (DVB). Shorter equilibrium times were possible with the sol-gel Carbowax fiber: for headspace extraction of the test analytes, they ranged from less than 3 min for benzene to 15 min for o-xylene. Extraction efficiencies of the sol-gel Carbowax fiber were superior to those of conventional fibers: for o-xylene, the extracted masses were 230 and 540% of that obtained with 100 microm PDMS and 65 microm Carbowax-DVB fibers, respectively.  相似文献   

16.
The retention of different physical forms of DNA by an electric field in a chromatography system was studied. We were able to effectively separate the supercoiled and the open circular forms of plasmid DNA using this type of electrochromatography system. Chromatography columns were packed with porous beads, and an axial electric field was applied so that convective buffer flow opposed the direction of electrophoresis of the DNA. A model system composed of approximately equal amounts of the super-coiled and open circular forms of the plasmid pBR 322 (4322 base pairs) was used to test the separation. Chromatography beads (agarose-based) with different porosities were used to determine the effect of the stationary phase on the separation. The porous media did not have a major effect on the separation, but the best separations were obtained using porous chromatography media made with the highest agarose concentration (10% agarose). Selective elution of plasmid DNA with different forms was obtained by either increasing the flow rates or decreasing the electric field strength (by steps or a gradient). In all the separations, the more compact supercoiled form of the plasmid was retained less strongly than either the open circular form (nicked) or the linear form. High molecular weight host genomic DNA was more strongly retained than the plasmid DNA. Increasing the ionic strength of the buffer improved resolution and capacity. The capacity of the separation was determined by injecting increasing amounts of plasmid DNA. Satisfactory separation was obtained at sample loading of up to 360 microg of total DNA on a column with dimensions of 2.5 by 11 cm (bed volume of 54 mL). The retention of DNA depends upon a counter-current flow of electrophoresis and convective flow and could be regarded as a type of field flow fractionation. The retention of the DNA by the electric field and flow is discussed in relation to the diffusion coefficients of the DNA.  相似文献   

17.
The diffusion deposition of point particles from a Stokes–Brinkman transverse stationary flow in a model monolayer membrane composed of contacting spherical hollow grains (capsules) with porous permeable shells formed from nanoparticles, is calculated. Monolayers with square and hexagonal packings of the grains are considered. Approximation equations are constructed for the dependences of grain drag force on shell thickness, Brinkman permeability parameter S, and internal shell radius ξ. Efficiencies of point particle collection on the grains are calculated as depending on the Peclet number, S, and ξ, and it is shown that layers of hollow permeable grains possess the highest filtration performance criterion among layers of impermeable and permeable uniform porous grains provided that the zero-concentration boundary condition is fulfilled at the outer radius of the grain.  相似文献   

18.
Size tunable and structure tailored core-shell-shell nanospheres containing silica cores, gold nanoparticle shells, and controlled thicknesses of smooth, corrugated, or porous silica shells over the gold nanoparticles have been synthesized. The synthesis involved the deposition of gold nanoparticles on silica cores, followed by sol-gel processing of tetraethoxysilane (TEOS) or sodium silicate to form dense or porous silica shells, respectively, over the gold nanoparticles. The structures and sizes of the resulting core-shell-shell nanospheres were found to heavily depend on the sizes of the core nanoparticles, the relative population of the gold nanoparticles on each core, and the concentration of TEOS. While a higher TEOS concentration resulted in thicker and more uniform silica shells around individual larger silica cores (approximately > or =250 nm in diameter), the same TEOS concentration resulted in aggregated and twin core-shell-shell nanostructures for smaller silica cores (approximately < or =110 nm in diameter). The thinner silica shells were synthesized by using a lower TEOS concentration. By using sodium silicate (Ung et al. J. Phys. Chem. B 1999, 103, 6770), the porous silica shells were synthesized. Controlled chemical etching of the core-shell-shell nanoparticles with an aqueous KCN solution resulted in corrugated silica shells around the gold nanoparticles or corrugated silica nanospheres with few or no gold nanoparticles. This has allowed synthesis of new types of core-shell-shell nanoparticles with tailored corrugated shells. The nanoporous silica shells provided accessible structures to the embedded metal nanoparticles as observed from the electrochemical response of the gold nanoparticles.  相似文献   

19.
20.
Two methods for preparing polycrystalline silver shells on colloidal silica spheres are reported. These do not include the use of organic ligands or metal seeding steps and are based on the Tollen's process for silvering glass. Reaction parameters such as temperature and reactant concentrations are adjusted to slow the reaction kinetics, which we find leads to preferential silver growth on the spheres. The resulting shells are polycrystalline and granular, showing highly uniform sphere coverage. Surface morphologies range from sparsely interconnected grains for shells approximately 20 nm thick, to complete (yet porous) shells of interconnected silver clusters which are up to approximately 140 nm in thickness. The extinction spectra of the core-shell materials are markedly different from those of smooth continuous shells, showing clear evidence that the granular shell geometry influences the plasmon resonance of the composite system. Spheres coated with shells 20-40 nm thick are also suitable for colloidal crystallization. Monolayers of self-assembled spheres with long-range ordering are demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号