首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
The energy structure of nonlocal spin polarons has been obtained for the real structure of the CuO2 plane of cuprate superconductors in the ensemble of such Fermi quasiparticles. A nonlocal spin polaron is formed due to the exchange interaction of the spin of an oxygen hole with the spins of the two nearest copper ions. The scattering amplitude of nonlocal spin polarons in the cooper channel calculated using the diagrammatic technique indicates that the spin and charge degrees of freedom are strongly correlated.  相似文献   

2.
Bulletin of the Russian Academy of Sciences: Physics - It is shown that the strong coupling between spin moments of copper ions and oxygen holes resulting from the hybridization processes in the...  相似文献   

3.
We study fermion correlators in a holographic superfluid with a d-wave (spin two) order parameter. We find that, with a suitable bulk Majorana coupling, the Fermi surface is anisotropically gapped. At low temperatures the gap shrinks to four nodal points. At high temperatures the Fermi surface is partially gapped generating four Fermi arcs.  相似文献   

4.
The concentration dependence of the exchange integral for the subsystem of spin moments of copper ions J(h) = J ? J 1 × h ? J 2 × h 2 has been calculated for the Emery model within the effective Hamiltonian obtained with due regard to intersite interactions and oxygen configurations with different numbers of holes. It is shown that allowance for the oxygen single-hole states occurring upon doping leads to additional contributions to J(h), whose intensities depend on the intersite correlations of the nearest environment of exchange-coupled copper ions.  相似文献   

5.
In angle-resolved photoemission spectroscopy pseudogap phenomenon in high-temperature superconductors is observed as Fermi arcs, or truncated Fermi surface. Here I argue that the hole induced chiral spin texture scenario naturally leads to Fermi arcs by including hole hopping processes. Disappearance of part of the Fermi surface is associated with the effect of the coherence factor. Suppressed spectral weight of the holes turns out to be an electron-like component which has weight near (π,0) only and has some charge instability.  相似文献   

6.
The effect of the Coulomb repulsion of holes on the Cooper instability in an ensemble of spin–polaron quasiparticles has been analyzed, taking into account the peculiarities of the crystallographic structure of the CuO2 plane, which are associated with the presence of two oxygen ions and one copper ion in the unit cell, as well as the strong spin–fermion coupling. The investigation of the possibility of implementation of superconducting phases with d-wave and s-wave of the order parameter symmetry has shown that in the entire doping region only the d-wave pairing satisfies the self-consistency equations, while there is no solution for the s-wave pairing. This result completely corresponds to the experimental data on cuprate HTSC. It has been demonstrated analytically that the intersite Coulomb interaction does not affect the superconducting d-wave pairing, because its Fourier transform V q does not appear in the kernel of the corresponding integral equation.  相似文献   

7.
We calculate spectral functions within the t-J model as relevant to cuprates in the regime from low to optimum doping. On the basis of equations of motion for projected operators an effective spin-fermion coupling is derived. The self-energy due to short-wavelength transverse spin fluctuations is shown to lead to a modified self-consistent Born approximation, which can explain strong asymmetry between hole and electron quasiparticles. The coupling to long-wavelength longitudinal spin fluctuations governs the low-frequency behavior and results in a pseudogap behavior, which at low doping effectively truncates the Fermi surface.  相似文献   

8.
It is proposed that superconductors possess a hidden ‘hole core’ buried deep in the Fermi sea. The proposed hole core is a small region of the Brillouin zone (usually at the center of the zone), where the lowest energy states in the normal state reside. We propose that in the superconducting state these energy states become singly occupied with electrons of a definite spin helicity. In other words, that holes of a definite spin helicity condense from the top to the bottom of the band in the transition to superconductivity, and electrons of that spin helicity ‘float’ on top of the hole core, thus becoming highly mobile. The hole core has radius q0 = 1/2λL, with λL the London penetration depth, and the electrons expelled from the hole core give an excess negative charge density within a London penetration depth of the real space surface of the superconductor. The hole core explains the development of a spin current in the transition to superconductivity (Spin Meissner effect) and the associated negative charge expulsion from the interior of metals in the transition to superconductivity, effects we have proposed in earlier work to exist in all superconductors and to be at the root of the Meissner effect.  相似文献   

9.
I. M. Sokolov 《JETP Letters》2017,105(5):341-345
A complete set of quasiparticle operators diagonalizing operators of the Coulomb and exchange interactions of copper and oxygen holes in cuprate high-temperature superconductors (HTSCs) is obtained. A scheme of energy bands in the regime of strong electron correlations is constructed. The effective operator for the singleband approximation is obtained with this scheme. It is found that the role of three-site correlations in hole HTSCs is negligibly small. This circumstance explains both the sharp increase in critical temperatures of hole HTSCs in comparison with electron-doped ones and the asymmetry between the spectra of collective spin excitations in these compounds.  相似文献   

10.
The low-energy spectrum of Fermi excitations of the three-band Emergy model has been calculated taking into account the intersite interaction. It is shown that the Coulomb interaction between oxygen and copper holes significantly renormalizes the spectrum of lower band Fermi excitations and modifies the concentration dependence of the chemical potential on the doping level.  相似文献   

11.
The effect of a high magnetic field on the electronic structure of HTSC cuprates is considered. The study is performed in the t-t′-t″-J* model, and the high magnetic field effect is taken into account not only as the Zeeman splitting of the one-electron levels, but also in the occupation numbers of the states with different spin projections and in the formation of the spin correlation functions. The field is assumed to be high enough to align all of the spins along the field. As a result, the Fermi surface reconstruction is obtained from four hole pockets about the nodal point (π/2, π/2) in the paramagnetic phase to a large hole pocket about the point (π, π) in the ferromagnetic phase. As the magnetic field strength decreases, a number of quantum phase transitions are revealed; they are manifested in the changed Fermi surface topology. The Fermi surface reconstruction with a decreasing field is qualitatively the same as that with an increasing doping degree in the absence of a magnetic field.  相似文献   

12.
Using a general expression for dc Josephson current, we study the Josephson effect in ballistic superconductor (SC)/ferromagnetic semiconductor (FS)/SC junctions, in which the mismatches of the effective mass and Fermi velocity between the FS and SC, spin polarization P in the FS, as well as strengths of potential scattering Z at the interfaces are included. It is shown that in the coherent regime, the oscillatory dependences of the maximum Josephson current on the FS layer thickness L and Josephson current on the macroscopic phase difference φ for the heavy and light holes, resulting from the spin splitting energy gained or lost by a quasiparticle Andreev-reflected at the FS/SC interface, are much different due to the different mismatches in the effective mass and Fermi velocity between the FS and the SC, which is related to the crossovers between positive (0) and negative (π) couplings or equivalently 0 and π junctions. Also, we find that, for the same reason, Z and P are required not to surpass different critical values for the Josephson currents of the heavy and light holes. Furthermore, it is found that, for the dependence of the Josephson current on φ, regardless of how L,Z, and P change, the Josephson junctions do not transit between 0 and π junctions for the light hole.  相似文献   

13.
14.
In the framework of the spin-fermion model, to which the Emery model is reduced in the limit of strong electron correlations, it is shown that the fermion quasiparticles in cuprate high-T c superconductors (HTSCs) arise under a strong effect of exchange coupling between oxygen holes and spins of copper ions. This underlies the spin-polaron nature of fermion quasiparticles in cuprate HTSCs. The Cooper instability with respect to the d-wave symmetry of the order parameter is revealed for an ensemble of such quasiparticles. For the normal phase, the spin-polaron concept allows us to reproduce the fine details in the evolution of the Fermi surface with the changes in the doping level x observed in experiment for La2-xSrxCuO4. The calculated T–x phase diagram correlates well with the available experimental data for cuprate HTSCs.  相似文献   

15.
We analyze antiferromagnetism and superconductivity in novel Fe-based superconductors within the weak-coupling, itinerant model of electron and hole pockets near (0, 0) and (π, π) in the folded Brillouin zone. We discuss the interaction Hamiltonian, the nesting, the RG flow of the couplings at energies above and below the Fermi energy, and the interplay between SDW magnetism, superconductivity and charge orbital order. We argue that SDW antiferromagnetism wins at zero doping but looses to superconductivity upon doping. We show that the most likely symmetry of the superconducting gap is A1g in the folded zone. This gap has no nodes on the Fermi surface but changes sign between hole and electron pockets. We also argue that at weak coupling, this pairing predominantly comes not from spin fluctuation exchange but from a direct pair hopping between hole and electron pockets.  相似文献   

16.
Low-temperature (T = 1.6 K) photoluminescence (PL) of individual CdSe/ZnSe/ZnMnSe quantum dots (QDs) with different magnitudes of the sp-d exchange interaction between the magnetic impurity ions and charge carriers has been studied in a magnetic field up to 12 T applied in the Faraday and Voigt geometry. The magnitude of the interaction was controlled by changing the fraction (ηe, h) of the squared wave function of charge carriers in the semimagnetic barrier by means of variation of the nonmagnetic (ZnSe) layer thickness. It is established that the sp-d exchange interaction leads to a change in the sign of the effective hole g factor even for ηe, h ~ 5%, while further increase in the interaction magnitude is accompanied by a rapid growth in the magnitude of spin splitting for both electrons and holes. The quantum yield of PL exhibits a significant decrease due to nonradiative Auger recombination with the excitation of Mn ions only for ηe, h ~ 12%, while the rate of the holes spin relaxation starts growing only for still higher ηe, h values. In a strong magnetic field perpendicular to the sample plane, the alignment of Mn spins leads to suppression of the Auger recombination only in the excited spin state. For a small rate of the hole spin relaxation, this leads to a rather unusual result: the emission from an excited trion state predominates in strong magnetic fields.  相似文献   

17.
The electron transport in hydrogenated amorphous carbon films a-C: H with copper nanocluster inclusions has been investigated. The conditions of cluster formation are derived. It is theoretically demonstrated that the energy band structure of the matrix substantially affects the conditions of cluster formation. The electron transport depends on the cluster structure. It is found that, below the percolation threshold (the case of isolated clusters), the transport current is governed by two components depending on the electric field strength. At low field strengths, the current is caused by electrons in the conduction band of amorphous carbon, which are thermally excited from copper clusters. At high field strengths, the transport current is provided by tunneling electrons from the Fermi level of copper clusters to the conduction band of a-C: H. The difference between the mobility edge of the conduction band of amorphous carbon and the Fermi level in copper clusters is determined from the temperature dependence of the resistance and proves to be equal to 0.48 eV. The temperature dependences of the resistance at low field strengths exhibit a fine structure. It is revealed that, above the percolation threshold, the electrical resistance of clusters is considerably contributed by the residual resistance, which is supposedly associated with the electron scattering by cluster surfaces. The temperature effect on the electron transport is examined using the spin-wave scattering technique at a frequency of 4.0 GHz. It is found that the spin wave in the yttrium iron garnet (YIG) film is predominantly affected by thermally excited electrons located above the mobility edge in the conduction band of a-C: H.  相似文献   

18.
Results are presented of studies of the dynamic magnetic susceptibility of CuO, Cu1?x Zn x O (x ≈ 1.5%), and Cu1?x Li x O (x ≈ 1%) single crystals. The orientational dependence of the ESR spectra was investigated at room temperature. The results for CuO are analyzed using a model of a quasi-one-dimensional antiferromagnet (S = 1/2) with anisotropic exchange interaction between Cu2+ spins in the chains and exchange coupling between the chains allowing for one-dimensional spin diffusion and spinon excitations. The estimated line width is of the same order of magnitude as the experimental data. Substituting Cu with Zn scarcely alters the spin dynamics of the Cu2+ ions, as in weakly diluted magnets. Lithium doping substantially increases the ESR line width and this is attributed to excess holes forming rapidly relaxing spin complexes with copper ions.  相似文献   

19.
The properties of Fermi surfaces and electron bands in electron-doped cuprates have been studied. The possible origins of a hole pocket in the nodal direction and a pseudogap at hot spots are discussed, including stripe phases and double bands in an antiferromagnetically correlated Fermi liquid. Within the framework of the mean field method, it is shown that both t-t′-t″-U Hubbard model solutions with a homogeneous antifer-romagnetic spin structure and those with a diagonal stripe structure can reproduce the fragmentar character of the Fermi surface. The appearance of hole pockets in various structures is related either to states in the lower Hubbard band or to states localized on domain walls. The behavior of a gap at the leading edge of the energy distribution of photoelectrons and its dependence on oxygen removal in the course of annealing are considered.  相似文献   

20.
Charged carriers with different spin states are spatially separated in a two-dimensional hole gas. Because of strong spin-orbit interaction, holes at the Fermi energy in GaAs have different momenta for two possible spin states traveling in the same direction, and, correspondingly, different cyclotron orbits in a weak magnetic field. Two point contacts, acting as a monochromatic source of ballistic holes and a narrow detector arranged in the magnetic focusing geometry are demonstrated to work as a tunable spin filter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号