首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Methods were developed for the analysis of natural antioxidants including phenolic compounds and flavonoids in beverages and plant extracts using gradient HPLC with multi-channel electrochemical coulometric detection. Suitability of various reversed-phase columns for this purpose was compared; pH and mobile phase gradients were optimized with respect to the separation selectivity and sensitivity of detection. Because of different target compounds in various sample types, the overlapping resolution maps and the normalized resolution product approaches described earlier were used to select optimum columns and gradients to suit the analysis of the individual sample types. The methods were applied to the analysis of phenolic compounds and flavonoids in beer, wine, tea, and yacon extracts. 32 phenolic compounds were identified and determined, including derivatives of benzoic and cinnamic acids, flavones, and a few related glycosides. Eight-channel CoulArray detection offers high selectivity and sensitivity with limits of detection in the low microg L(-1) range, at least an order of magnitude lower than single-channel coulometric detection using the Coulochem detector. No special sample pretreatment is necessary and, because of the compatibility of the CoulArray detector with gradient elution, phenolic antioxidants of different polarities can be determined in a single run. In addition to the retention times, the ratios of the areas of the pre-dominant and post-dominant peaks to the area of the dominant peak can be used for improved identification of natural antioxidants.  相似文献   

3.
4.
The capabilities of high-performance liquid chromatography (h.p.l.c.) for the determination of phenolic compounds in 80% ethanol extracts from plant material are described. A reversed-phase column was used and elution was done with a linear gradient from 0.01 M phosphoric acid up to methanol. The efficiency of the method was studied via determination limits, defined as the minimum concentration of a compound (μg of compound per gram of extracted dry plant material) necessary to provide 90% probability that the relative error on the determination of the compound in an extract from a plant sample taken at random is < 10%. These limits take into account matrix interferences as a source of error, and were calculated with a minicomputer for the determination of 19 phenolic compounds in plant extracts. For good determinations, the concentrations of the components should be in the range 1–10 mg g?1 of dry plant material. Separating the extracts into different chemical groups (on ion-exchange materials) prior to h.p.l.c. decreases the determination limits about five times. The dependence of determination limits on the u.v. characteristics of the compound, the sample clean-up, and the column characteristics are discussed quantitatively by means of a simple empirical equation.  相似文献   

5.
A method was developed for simultaneous analysis of natural antioxidants in beer using multichannel electrochemical detection with a CoulArray detector, which enables selective and sensitive antioxidant detection in gradient HPLC and facilitates the identification of analytes based on the ratios of signals recorded at different potentials applied to the detection cells arranged in series. The separation conditions were optimised for 27 phenolic compounds including derivatives of benzoic and cinnamic acids, flavones, and a few related glycosides identified in beer samples. Separation selectivities of 11 columns with different stationary phase chemistries were compared, and the pH and gradient programs were optimised for the individual columns to provide best resolution and high number of resolved peaks, using the window-diagram approach. The effects of pH on the sensitivity of electrochemical coulometric detection were considered in the optimisation approach. The optimised conditions were applied to the analysis of real beer samples.  相似文献   

6.
A RP-HPLC method that allows the separation of several types of phenolic compounds present in grapes and wines by direct injection of samples, using a binary gradient with solvents free of salts and photodiode array detection is described. Results show that more than 15 different phenolic molecules with antioxidant properties (flavan-3-ols, anthocyanins, cinnamic acid derivatives, flavonol derivatives and trans-resveratrol) may be separated in a single run by direct injection of red wine. The method is also valuable for the analysis of these compounds in white wine and in skins, seeds and pulp extracts of red and white grapes.  相似文献   

7.
When using capillary electrophoresis with a diode array detector, the wavelength at maximum absorbance is often chosen to quantify a given analyte. However, the background noise for every wavelength should be taken into account as it is by maximising the signal to noise ratio that the lowest limit of detection will be obtained. Here, we proposed an algorithm allowing to correct an electropherogram from its background absorption and to estimate the background noise. Applying it to all the electropherograms obtained in each wavelength channel allows obtaining the background noise as a function of the wavelength, which can be used to calculate the signal to noise ratio. This not only allows selecting the best wavelength to maximise the limit of detection of a given analyte, but also to generate a noise normalised base peak electropherogram (nn-BPE). It is shown that the noise normalised base peak electropherograms substantially improve the peaks visualisation. The algorithm is part of a graphic user interface that runs under MatLab environment; it does not require any programming knowledge and is freely available.  相似文献   

8.
In this work, the simultaneous separation of ten phenolic compounds (protocatechuic, p-coumaric, o-coumaric, vanillic, ferulic, caffeic, syringic acids, hydroxytyrosol, tyrosol and oleuropein) in extra virgin olive oils (EVOOs) by isocratic RP CEC is proposed. A CEC method was optimized in order to completely resolve all the analyzed compounds by studying several experimental parameters. The influence of the stationary phase type (C(18) and C(8) modified silica gel), buffer concentration and pH as well as the organic modifier content of the mobile phase on retention factors, selectivity and efficiency were evaluated in details. A capillary column packed with Cogent bidentate C(18) particles for 23 cm and a mobile phase composed by 100 mM ammonium formate buffer pH 3/H(2)O/ACN (5:65:30 v/v/v) allowed the baseline resolution of the compounds under study in less than 35 min setting the applied voltage and temperature at 22 kV and 20 degrees C, respectively. A study, evaluating the intra- and interday precision as well as LOD and LOQ and method linearity was developed in accordance with the analytical procedures for method validation. LODs were in the range of 0.015-2.5 microg/mL, while calibration curves showed a good linearity (r(2) >0.997). The CEC method was applied to the separation and determination of these compounds in EVOO samples after a suitable liquid-liquid extraction procedure. The mean recovery values of the studied compounds ranged between 87 and 99%.  相似文献   

9.
This study is focused on an important family of the sage (Salvia) species, with Salvia officinalis L. having a long-established position in European traditional medicine. Binary fingerprints (chromatographic profiles) of six different sage species were compared using HPLC coupled with two different detectors: the diode-array detector and the evaporative light-scattering detector. Advantages of using binary fingerprinting over single-detector fingerprinting are demonstrated and discussed, with selected examples. Experimental data are provided for a comparison of the chemical composition of sage samples originating from two harvesting seasons (2007 and 2008). A number of phytochemical standards (i.e., certain phenolic acids, flavonoids, and coumarin) were used that allowed identification and semiquantitative estimation of these particular compounds in the analyzed methanol extracts.  相似文献   

10.
Rhubarb is an important herbal medicine for the treatment of constipation, inflammation, and cancer. In this study, a facile method based on liquid chromatography coupled with electrospray ionization tandem mass spectrometry has been established for the analysis of bioactive phenolic compounds in rhubarbs. From six rhubarb species, official (Rheum officinale, R. palmatum, and R. tanguticum) and unofficial (R. franzenbachii, R. hotaoense, and R. emodi), a total of 107 phenolic compounds were identified or tentatively characterized based on their mass spectra. These compounds include sennosides, anthraquinones, stilbenes, glucose gallates, naphthalenes, and catechins. Ion chromatograms for the identified compounds of different rhubarbs were then compared. Consistent with previous reports, sennosides and rhein were only detected in official rhubarbs. Unexpectedly, we found that R. officinale contained very different phenolic compounds from the other two official species. Sennoside A, which has been considered as the major purgative component of rhubarb, was only detected in R. officinale, while its close isomers were observed in R. palmatum and R. tanguticum. In addition, the predominant anthraquinone glycosides in R. officinale were found to be rhein 8-O-glucoside and emodin 1-O-glucoside, whereas those in R. palmatum and R. tanguticum were rhein 1-O-glucoside and emodin 8-O-glucoside. Stilbenes, which are the major constituents of unofficial rhubarbs, were also different among the species. Our results clarify the chemical composition of rhubarbs comprehensively for the first time. Due to the significant differences in chemical components of rhubarbs, we suggest that different Rheum species be used separately in clinical practice.  相似文献   

11.
The use of a separation step, such as liquid chromatography, prior to inductively coupled plasma mass spectrometry (ICP–MS) has become a common tool for highly selective and sensitive analyses. This type of coupling has several benefits including the ability to perform speciation analysis or to remove isobaric interferences. Several limitations of conventional instruments result from the necessity to scan or pulse the mass spectrometer to obtain a complete mass spectrum. When the instrument is operated in such a non-continuous manner, duty cycle is reduced, resulting in poorer absolute limits of detection. Additionally, with scanning instruments, spectral skew can be introduced into the measurement, limiting quantitation accuracy. To address these shortcomings, a high-performance liquid chromatograph has been coupled to an ICP–MS capable of continuous sample introduction and simultaneous multimass detection. These features have been realized with a novel detector array, the focal plane camera. Instrument performance has been tested for both speciation analysis and for the elimination of isobaric interferences. Absolute limits of detection in the sub picogram to tens of picograms regime are obtainable, while the added mass dimension introduced by simultaneous detection dramatically increases chromatographic peak capacity.  相似文献   

12.
Ojala M  Ketola RA  Virkki V  Sorsa H  Kotiaho T 《Talanta》1997,44(7):1253-1259
Two membrane inlet mass spectrometric (MIMS) methods for determining phenolic compounds in water are described and compared, namely direct analysis and analysis after acetylation of the phenolic compounds. Direct analysis of phenolic compounds in water is a very simple and rapid method and detection limits are relatively low (from 30 mug 1(-1) for phenol to 1000 mug 1(-1) for 4-nitrophenol). Analysis of phenolic compounds after aqueous acetylation is also a very simple and rapid method, and the detection limits are even two orders of magnitude lower than in the direct analysis. For example the detection limit of phenol acetate is 0.5 mug 1(-1) and that of 4-nitrophenol is 10 mug 1(-1). The acetylation method was also tested in the analysis of phenolic compounds from contaminated surface water samples.  相似文献   

13.
A new method based on HPLC coupled with electrospray ionization tandem mass spectrometry (HPLC-ESI-MS/MS) has been established for the analysis of phenolic compounds in Epimedium plants. The characteristic fragmentation pathways of 29 phenolic compounds were studied, and 126 compounds were identified or tentatively characterized based on their mass spectra from fourteen samples including the aerial samples and the underground parts of the seven species. Furthermore, the differences in phenolic compound profiles between different Epimedium plants and two parts of the seven species were reported for the first time. Due to their significant chemical differences, these Epimedium species should be used separately in clinical practice.  相似文献   

14.
A new analytical method has been developed for sample preconcentration and analysis of phenolic compounds in sherry wine using on-line solid-phase extraction(SPE)-HPLC-diode array detection. The samples of wine were injected and adsorbed onto polystyrene divinylbenzene cartridges; a robotic semiflexible system was used to automate the SPE stage. Chromatographic separation was carried out in a Symmetry C18 steel cartridge, with a two-step elution gradient. Peaks were identified by comparing their UV spectra with the library of spectra compiled by the authors.  相似文献   

15.
A simple CZE method for quantification of phenolic compounds (vanillin, cinnamic, sinapic, chlorogenic, syringic, ferulic, benzoic, p-coumaric, vanillic, p-hydroxybenzoic, rosmarinic, caffeic, gallic and protocatechuic acids) in less than 10 min using 20 mM sodium tetraborate (pH 9.2) with 5% v/v methanol as a BGE and with UV detection at 254 nm is described. The LODs (3 S/N) ranged between 0.02 and 0.12 microg/ mL. Repeatabilities (RSDs) were 0.66-1.8 and 1.56-4.23% for migration times and peak areas (n = 5), respectively. The method was applied to the determination of phenolic compounds in chess (Bromus inermis L.) after Soxhlet extraction and purification of the crude extracts with SPE procedures. The results compared well with those obtained by liquid chromatographic method. B. inermis was found as a suitable model plant containing a broad spectrum of phenolic compounds in easily detectable concentrations and as a potential source of antioxidants.  相似文献   

16.
Non-aqueous capillary electrophoresis (NACE) with large-volume sample stacking injection using the electroosmotic flow pump (LVSEP) has been developed for the determination of tetrabromobisphenol A (TBBPA) and other phenolic compounds in environmental matrices. Methanol has been used as run buffer solvent to reduce the electroosmotic flow (EOF). Identification and quantification of the analytes was performed by photodiode array ultraviolet detection. LVSEP-NACE improved sensitivity of the peak height by 90-300-fold. The method developed was applied to the analysis of TBBPA in river water and wastewater samples, using solid-phase extraction (SPE) as sample pretreatment process. The average recoveries of the analytes were in the range of 96-106% and 73-103% for 1 L of river water and 0.5 L of wastewater samples, respectively. When the method was based on off line SPE-LVSEP-NACE, sensitivity was improved by 3300-4500-fold and 1600-2200-fold for river water and wastewater samples, respectively.  相似文献   

17.
The antioxidant efficiency of dry extracts from inflorescences and/or leaves of seven Sorbus species was studied using four in vitro tests of SET (single electron transfer) and HAT-type (hydrogen atom transfer) mechanisms. The 70% methanol extracts and its diethyl ether, ethyl acetate, n-butanol and water fractions were tested in parallel with the phenolic standards, e.g., caffeic acid, quercetin, BHA, BHT, and Trolox. The SET-type activity of the extracts depended primarily on the extraction solvent. The most valuable extracts were n-butanol and ethyl acetate ones, which activity was high in the DPPH (EC(50) = 3.2-5.2 μg/mL), TEAC (2.8-4.0 mmol Trolox/g), and FRAP (9.8-13.7 mmol Fe2+/g) tests, and strongly correlated with the total phenolic levels (39.6-58.2% of gallic acid equivalents). The HPLC-PDA analysis of the extracts led to the identification of chlorogenic acid, isoquercitrin, hyperoside, rutin, quercetin 3-O-sophoroside, and sexangularetin 3-O-β-D-glucopyranoside as the main components. Apart from flavonoids and hydroxycinnamic acids, proanthocyanidins have also a significant impact on the SET-type activity. The HAT-reactivity of the extracts in the linoleic acid peroxidation test (IC(50) = 36.9-228.3 μg/mL) depended more strongly on the plant tissue than on the extraction solvent, and its correlation with the phenolic content was weak. Both SET and HAT-type activity of the most potent Sorbus extracts was comparable with the activity of the standards, indicating their great potential as effective sources for health products.  相似文献   

18.
Summary Two packing materials, C18 and PLRP-S, are studied for on-line trace enrichment of phenolic compounds in water. Various precolumns of different internal diameter are also tested and the addition of an ion-pair reagent to increase retention and thus, breakthrough volumes of phenolic compounds, is studied. Best results are obtained when a PLRP-S precolumn is coupled on-line with a C18 analytical column and DAD detector. Addition of TBA considerably increases breakthrough volumes. In contrast, when a C18 precolumn is used, breakthrough volumes are lower and it is impossible to determine TCP and PCP, under the experimental conditions used, because of interference of other nonpolar compounds in the samples. The performance of the system is evaluated with river and tap water and the preconcentration of 10 ml of sample in a PLRP-S precolumn involves a linear range between 1 g 1–1 and 20 l–1 and limits of determination between 0.5 g l–1 and 1 g l–1 are obtained.  相似文献   

19.
Isotachophoresis carried out in a 0.25 mm i.d. fused-silica capillary tube yielded high resolution, compared with that in a fluorinated ethylene-propylene polymer tube. The use of an ultraviolet-visible multichannel spectrophotometer with photodiode array as detector together with a cross flow cell (volume 0.01 μl) was investigated. The system was successfully applied to the analysis of cationic dyes such as neutral red, bismarck brown, and basic fuchsine.  相似文献   

20.
The combination of capillary isotachophoresis (ITP) and capillary zone electrophoresis (CZE) in the column coupling configuration was optimized in a mode where the electrolyte for the CZE step is different from the leading and terminating ITP electrolytes. Two colored markers, picric acid and 1-nitroso-2-naphthol, were used for exact timing of the transfer of isotachophoretically stacked analyte zones into the CZE column and for the control of the residual amount of the leading and terminating ITP electrolytes entering the CZE capillary together with the analytes, thus controlling the duration of transient ITP migration in the CZE capillary and ensuring good separation of the analytes and reproducibility of the migration times (relative standard deviations 1%). ITP-CZE was applied to the simultaneous assay of several cinnamic acid derivatives and flavonoids in methanolic extracts of Sambucus flowers and Crataegus leaves and flowers. The preconcentrating and cleansing effect of the ITP step allowed injection of relatively large sample volumes (30 microL). The limits of detection were approximately 20-50 ng x mL(-1) and 100 ng x mL(-1) for the acids and flavonoids, respectively ( thick similar 200-times lower compared to conventional CE) with spectrophotometric detection at 254 nm. The ITP-CZE exhibited satisfactory linearity and precision when using CZE buffer of pseudo "pH" 9.0; 1-nitroso-2-naphthol was employed as the internal standard. The separation took approximately 35 min. The ITP-CZE results for rutin, hyperoside, and vitexin-2-O"-rhamnoside were in good accordance with those obtained previously by high-performance liquid chromatography.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号