首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
The far-infrared and Raman spectra of binuclear molecules [Me2AuX]2 (X = Cl, Br, I) and [Me2Au(OOCR)]2 (R = Me, CF3, But, Ph) in the 600–70 cm−1 region are reported. The experimentally measured vibrational frequencies of [Me2AuX]2 are in a good agreement with density functional theory predictions. The Au…Au vibrational interactions predicted to be in the 270–60 cm−1 region of [Me2AuX]2 far-IR and Raman spectra have been observed. The Raman-active Au…Au vibrations of the [Me2Au(OOCR)]2 molecules were found to be in the same region as those of [Me2AuX]2. The Au–X stretching modes were observed between 100 and 250 cm−1 in accordance with the DFT predictions. Their frequencies in the IR spectra of [Me2AuX]2 increase in the sequence I < Br < Cl while the AuC2 stretching frequencies decrease in the same order. This fact might be an evidence of the decreasing covalent character of the gold-halogen bridges. The Au–O stretching bands of dimethylgold(III) carboxylates have been observed in the 500–250 cm−1 region, and Au–C stretching frequencies of both [Me2AuX]2 and [Me2Au(OOCR)]2 compounds have been found between 600 and 500 cm−1.  相似文献   

2.
The healing process in guinea pig skin following surgical incisions was evaluated at the molecular level, in vivo, by the use of Raman spectroscopy. After the incisions were closed either by suturing or by laser tissue welding (LTW), differences in the respective Raman spectra were identified. The study determined that the ratio of the Raman peaks of the amide III (1247 cm−1) band to a peak at 1326 cm−1 (the superposition of elastin and keratin bands) can be used to evaluate the progression of wound healing. Conformational changes in the amide I band (1633–1682 cm−1) and spectrum changes in the range of 1450–1520 cm−1 were observed in LTW and sutured skin. The stages of the healing process of the guinea pig skin following LTW and suturing were evaluated by Raman spectroscopy, using histopathology as the gold standard. LTW skin demonstrated better healing than sutured skin, exhibiting minimal hyperkeratosis, minimal collagen deposition, near-normal surface contour, and minimal loss of dermal appendages. A wavelet decomposition–reconstruction baseline correction algorithm was employed to remove the fluorescence wing from the Raman spectra.  相似文献   

3.
The basic copper arsenate mineral strashimirite Cu8(AsO4)4(OH)4·5H2O from two different localities has been studied by Raman spectroscopy and complemented by infrared spectroscopy. Two strashimirite mineral samples were obtained from the Czech (sample A) and Slovak (sample B) Republics. Two Raman bands for sample A are identified at 839 and 856 cm−1 and for sample B at 843 and 891 cm−1 are assigned to the ν1 (AsO43−) symmetric and the ν3 (AsO43−) antisymmetric stretching modes, respectively. The broad band for sample A centred upon 500 cm−1, resolved into component bands at 467, 497, 526 and 554 cm−1 and for sample B at 507 and 560 cm−1 include bands which are attributable to the ν4 (AsO43−) bending mode. In the Raman spectra, two bands (sample A) at 337 and 393 cm−1 and at 343 and 374 cm−1 for sample B are attributed to the ν2 (AsO43−) bending mode. The Raman spectrum of strashimirite sample A shows three resolved bands at 3450, 3488 and 3585 cm−1. The first two bands are attributed to water stretching vibrations whereas the band at 3585 cm−1 to OH stretching vibrations of the hydroxyl units. Two bands (3497 and 3444 cm−1) are observed in the Raman spectrum of B. A comparison is made of the Raman spectrum of strashimirite with the Raman spectra of other selected basic copper arsenates including olivenite, cornwallite, cornubite and clinoclase.  相似文献   

4.
Heretofore, a scientific and systemic method for differentiation and quality estimation of a well-known Chinese traditional medicine, ‘Cordyceps’, has not been established in modern market. In this paper, Fourier-transform infrared spectroscopy (FTIR) and two-dimensional correlation infrared spectroscopy (2D-IR) are employed to propose a method for analysis of Cordyceps. It has presented that IR spectra of real Cordyceps of different origins and counterfeits have their own macroscopic fingerprints, with discriminated shapes, positions and intensities. Their secondary derivative spectra can amplify the differences and confirm the potentially characteristic IR absorption bands 1400–1700 cm−1 to be investigated in 2D-IR. Many characteristic fingerprints are discovered in 2D-IR spectra in the range of 1400–1700 cm−1 and hetero 2D spectra of 670–780 cm−1 × 1400–1700 cm−1. The different fingerprints display different chemical constitutes. Through the three steps, different Cordyceps and their counterfeits can be discriminated effectively and their qualities distinctly display. Successful analysis of eight Cordyceps capsule products has proved the practicability of the method, which can also be applied to the quality estimation of other Chinese traditional medicines.  相似文献   

5.
The synthesis of novel metal-free and zinc phthalocyanines with four 3-[(2-diethylamino)ethyl]-7-oxo-4-methylcoumarin dye groups on the periphery were prepared by cyclotetramerization of a novel 3-[(2-diethylamino)ethyl]-7-[(3,4-dicyanophenoxy)]-4-methylcoumarin. The novel chromogenic compounds were characterized by elemental analysis, 1H NMR, 13C NMR, MALDI-TOF, IR and UV–Vis spectral data. The electronic spectra exhibit bands of coumarin identity along with characteristic Q and B bands of the phthalocyanine (Pc) core. The IR spectra of all the Pcs showed three characteristic intense bands, at 1704 cm−1 for the lactone carbonyl and two bands at 1489–1604 cm−1 for the conjugated olefinic system.  相似文献   

6.
Raman spectroscopy complimented with infrared spectroscopy has been used to characterise the antimonate mineral bindheimite Pb2Sb2O6(O,OH). The mineral is characterised by an intense Raman band at 656 cm−1 assigned to SbO stretching vibrations. Other lower intensity bands at 664, 749 and 814 cm−1 are also assigned to stretching vibrations. This observation suggests the non-equivalence of SbO units in the structure. Low intensity Raman bands at 293, 312 and 328 cm−1 are assigned to the OSbO bending vibrations. Infrared bands at 979, 1008, 1037 and 1058 cm−1 may be assigned to δOH deformation modes of SbOH units. Infrared bands at 1603 and 1640 cm−1 are assigned to water bending vibrations, suggesting that water is involved in the bindheimite structure. Broad infrared bands centred upon 3250 cm−1 supports this concept. Thus the true formula of bindheimite is questioned and probably should be written as Pb2Sb2O6(O,OH,H2O).  相似文献   

7.
The electronic spectra of solid iron(III) vanadates FeVO4 and Fe2V4O13 were investigated by the diffuse reflectance technique in the spectral range 12 500–50 000 cm−1. The spectra of investigated vanadates contain 2–3 intensive CT bands in the UV region and two lowest energy dd bands in the 12 000–22 000 cm−1 range. The presence of the weak bands for FeVO4 and Fe2V4O13 at 16 500 cm−1 and 20 500 cm−1 points to the lattice deffects (oxygen deficiency and the presence of the V4+ ions) in the structure of investigated vanadates.  相似文献   

8.
Sanidine, a variety of feldspar minerals has been investigated through optical absorption, vibrational (IR and Raman), EPR and NMR spectroscopic techniques. The principal reflections occurring at the d-spacings, 3.2892, 3.2431, 2.9022 and 2.6041 Å confirm the presence of sanidine structure in the mineral. Sanidine shows five prominent characteristic infrared absorption bands in the region 1200–950, 770–720, 590–540 and 650–640 cm−1. The Raman spectrum shows the strongest band at 512 cm−1 characteristic of the feldspar structure, which contains four membered rings of tetrahedra. The UV–vis–NIR absorption spectrum had strong absorption features at 6757, 5780 and 5181 cm−1 due to the combination of fundamental OH– stretching. The bands at 11236 and 8196 cm−1and the strong, well-defined band at (30303 cm−1 attest the presence of Fe2+ and Fe3+, respectively, in the sample. The signals at g = 4.3 and 3.7 are interpreted in terms of Fe3+ at two distinct tetrahedral positions Tl and T2 of the monoclinic crystal structure The 29Si NMR spectrum shows two peaks at −97 and −101 ppm corresponding to T2 and T1, respectively, and one peak in 27Al NMR for Al(IV).  相似文献   

9.
The synthesis of novel phthalonitriles substituted at 3- or 4-position with 6,7-dihexyloxy-3-(4-oxyphenyl)coumarin were performed. The metal-free and metallo phthalocyanines (MPcs) (M = Zn, Co, Cu) were prepared by cyclotetramerization of 6,7-dihexyloxy-3-[p-(2′,3′-dicyanophenoxy)phenyl]coumarin or 6,7-dihexyloxy-3-[p-(3′,4′-dicyanophenoxy)phenyl]coumarin. The newly prepared compounds, phthalonitriles and Pcs, have been characterized by elemental analysis, 1H NMR, 13C NMR, MALDI-TOF, IR, UV–Vis and fluorescence spectral data. The electronic spectra exhibit bands of coumarin identity along with characteristic Q and B bands of the Pc core. The IR-spectra of all Pcs showed three characteristic intense bands at 1709–1700 cm−1 for lactone carbonyl, two bands at 1489–1604 cm−1 for conjugated olefinic system.  相似文献   

10.
The intracellular second messenger deprotonated adenosine 3′,5′-cyclic monophosphate anion (cAMP-H), generated as gaseous species by electrospray ionization (ESI) and stored in a Paul ion-trap mass spectrometer, has been investigated by mass-resolved infrared multiple photon dissociation (IRMPD) spectroscopy in the 900–1800 cm−1 fingerprint wavenumber range, exploiting the powerful and continuously tunable radiation from a free electron laser (FEL) at the Centre Laser Infrarouge d’Orsay (CLIO). The IRMPD features are interpreted by comparison with the IR spectra obtained by quantum chemical calculations for different low-lying conformers, allowing an assignment for the observed IRMPD bands. It is to be noted that the calculated IR spectra for the most stable conformers look all rather similar and do not allow an unambiguous structural assignment, based exclusively on the IRMPD spectrum. However, the positions and intensities of the IRMPD features of isolated (cAMP-H) ions are consistent with a species deprotonated at the phosphate group and compatible with the main equilibrium structures lying within 18 kJ mol−1 from the lowest lying conformation, the anti-chair form with a C3′-endo sugar twist.  相似文献   

11.
A universal NIR model for identification of 24 types of penicillins for injection has been developed. A total of 194 batches of 24 products from 87 manufacturers in China were used in the study. The classification model is a principal component analysis (PCA) based model consisting of a primary identification library with four sub-libraries. The spectral frequency regions used were 6000–6400 cm−1 and 8400–8900 cm−1 in the main library, 6000–6800 cm−1 in sub-library 1, 4100–12,000 cm−1 in sub-libraries 2 and 3, and 6200–6400 cm−1 and 4700–5000 cm−1 in sub-library 4. The data preprocessing method is the first derivative with nine-point smoothing followed by vector normalization. The distances between spectra were calculated using factors 2–5 for the primary identification library, factors 4–7 for sub-library 1, and factor 2 for sub-libraries 2–4. The specificity of the model was validated, and it had a correct identification rate of approximately 99%. This study has not only confirmed, but also improved the strategy described in our early report (Chong et al. (2009) [11]) to build such a library for the identification of different medicines by NIR.  相似文献   

12.
The possible stable forms of 3-phenylpropylamine (3-PPA) molecule were experimentally and theoretically studied by infrared and Raman spectroscopy. FT-IR and Raman spectra of 3-PPA were recorded in the regions of 4000–400 cm−1 and 3700–60 cm−1, respectively. The potential energy surface corresponding to the internal rotations of the molecule was investigated by semi-empirical quantum mechanical methods, and appropriate conformers defined with B3LYP hybrid density functional theory method along with the basis sets of different size and type. Results from experimental and theoretical data showed the transtransgauche (TTG) to be the most stable form of a 3-PPA molecule.  相似文献   

13.
The surface state of optically pure polydisperse TiO2 (anatase and rutile) was determined by infra-red (IR) spectroscopy analysis in the temperature range of 100–453 K. Anatase A300 spectrum, contrary to rutile R300 one, has a broad three-component absorption band with peaks at 1048, 1137 and 1222 cm−1 in the spectral range of δ(Ti–O–H) deformation vibrations. For rutile R300 we observed a very weak band at 1047 cm−1, and for the thermal treated rutile R900 these bands were not appeared at all. The analysis of temperature dependencies for the mentioned absorption bands revealed the spectral shift of 1222 cm−1 band towards the high frequencies, when the temperature increased, but the spectral parameters of 1137 and 1048 cm−1 bands remained the same. The temperature of 1222 cm−1 band maximum shift was 373–393 K and correlated with DSC data. Obtained results allowed to assign 1222 cm−1 band to the deformation vibrations of OH-groups, bounded to the surface adsorbed water molecules by weak hydrogen bonds (5 kcal/mol). During the temperature growth these molecules desorbed, which also resulted in the intensity decreasing of stretching OH-groups vibration IR-bands at 3420 cm−1. The destruction and desorption of surface water complexes led to Ti–O–H bond strengthening. IR bands at 1137 and 1048 cm−1 were attributed to the stronger bounded adsorbed water molecules, which are also characterized with stretching OH-groups vibration bands at 3200 cm−1. These surface structure were additionally stabilized by hydrogen bonds with the neighbouring TiO2 lattice anions and other OH-groups, and desorbed at higher temperatures.  相似文献   

14.
In the work model calculations of the vibrations of ideally isolated silicooxygen rings (using PM3 method) have been carried out. three-, four-, and six-membered rings have been considered. It has been found that that the three-membered silicooxygen rings are flat and practically undeformed showing D3h symmetry. The rings of higher number of ring members (i.e. n>3) are deformed to some extent. The deformation reveals itself most significantly in the Si–O–Si bond angles distribution. In the case of all the rings the bridging Si–O–Si bonds are ca. 0.02–0.04 Å shorter than the non-bridging Si–O bonds. Hypothetical IR spectra for all the rings considered have been also calculated. Analysis of these hypothetical spectra leads to the conclusion that the whole spectrum can be divided into four wavenumbers regions, 1200–1100 cm−1 stretching Si–O(Si) vibrations; 1000–800 cm−1 stretching Si–O vibrations; 800–600 cm−1; the region in which a band characteristic of silicooxygen rings appears, and below 600 cm−1 bending O–Si–O and (Si)O–Si–O(Si). It has been also found that as the number of ring members increases the ‘ring band’ shifts to lower wavenumbers: 725 cm−1 for three-membered rings, 650 cm−1 for four-membered rings and 610 cm−1 for six-membered rings. Calculated spectra have been compared with the experimental spectra of cyclosilicates. They showed good agreement in the 1200–600 cm−1 region. In the experimental spectra as well as in the calculated ones, with increasing the number of ring members the ‘ring band’ shifts towards lower wavenumbers.  相似文献   

15.
Infrared spectroscopy has been used to study nano- to micro-sized gallium oxyhydroxide α-GaO(OH), prepared using a low temperature hydrothermal route. Rod-like α-GaO(OH) crystals with average length of 2.5 μm and width of 1.5 μm were prepared when the initial molar ratio of Ga to OH was 1:3. β-Ga2O3 nano and micro-rods were prepared through the calcination of α-GaO(OH). The initial morphology of α-GaO(OH) is retained in the β-Ga2O3 nanorods.The combination of infrared and infrared emission spectroscopy complimented with dynamic thermal analysis were used to characterise the α-GaO(OH) nanotubes and the formation of β-Ga2O3 nanorods. Bands at around 2903 and 2836 cm−1 are assigned to the –OH stretching vibration of α-GaO(OH) nanorods. Infrared bands at around 952 and 1026 cm−1 are assigned to the Ga–OH deformation modes of α-GaO(OH). A significant number of bands are observed in the 620–725 cm−1 region and are assigned to GaO stretching vibrations.  相似文献   

16.
In this paper several polycrystalline molecules with sulfonate groups and some of their metal complexes, including dl-homocysteic acid (DLH) and its Sr- and Cu-complexes, pyridine-3-sulphonic acid and its Co- and Ni-complexes, sulfanilic acid and l-cysteic acid were investigated using THz time-domain methods at room temperature. The results of THz absorption spectra show that the molecules have characteristic bands in the region of 0.2–2.7 THz (6–90 cm−1). THz technique can be used to distinguish different molecules with sulfonate groups and to determine the bonding of metal ions and the changes of hydrogen bond networks. In the THz region DLH has three bands: 1.61, 1.93 and 2.02 THz; and 0.85, 1.23 and 1.73 THz for Sr-DLH complex, 1.94 THz for Cu-DLH complex, respectively. The absorption bands of pyridine-3-sulphonic acid are located at 0.81, 1.66 and 2.34 THz; the bands at 0.96, 1.70 and 2.38 THz for its Co-complex, 0.76, 1.26 and 1.87 THz for its Ni-complex. Sulphanilic acid has three bands: 0.97, 1.46 and 2.05 THz; and the absorption bands of l-cysteic acid are at 0.82, 1.62, 1.87 and 2.07 THz, respectively. The THz absorption spectra after complexation are different from the ligands, which indicate the bonding of metal ions and the changes of hydrogen bond networks. M–O and other vibrations appear in the FIR region for those metal–ligand complexes. The bands in the THz region were assigned to the rocking, torsion, rotation, wagging and other modes of different groups in the molecules. Preliminary assignments of the bands were carried out using Gaussian program calculation.  相似文献   

17.
The rabbit immunoglobulin antibodies (IgGs) have been immobilized onto nanobiocomposite film of chitosan (CH)–iron oxide (Fe3O4) nanoparticles prepared onto indium–tin oxide (ITO) electrode for detection of ochratoxin-A (OTA). Excellent film forming ability and availability of –NH2 group in CH and affinity of surface charged Fe3O4 nanoparticles for oxygen support the immobilization of IgGs. Differential pulse voltammettry (DPV) studies indicate that Fe3O4 nanoparticles provide increased electroactive surface area for loading of IgGs and improved electron transport between IgGs and electrode. IgGs/CH–Fe3O4 nanobiocomposite/ITO immunoelectrode exhibits improved characteristics such as low detection limit (0.5 ng dL−1), fast response time (18 s) and high sensitivity (36 μA/ng dL−1 cm−2) with respect to IgGs/CH/ITO immunoelectrode.  相似文献   

18.
Near-infrared (NIR), X-ray diffraction (XRD) and infrared (IR) spectroscopy have been applied to hydrotalcites of the formula Mg6 (Fe,Al)2(OH)16(CO3)·4H2O formed by intercalation with the carbonate anion as a function of divalent/trivalent cationic ratio. Such hydrotalcites were found to show variation in the d-spacing attributed to the size of the cation. In the IR (1750–4000 cm−1), the position of all bands except those at approximately 3060 cm−1 shift to higher wavenumbers as the cation ratio increases. Conversely, at wavenumbers below 1000 cm−1, the bands shift to lower wavenumbers as the cation ratio increases. A water bending mode at higher wavenumbers was also observed which indicates that the water is strongly hydrogen bonded. In the NIR spectrum between 8000 and 12,000 cm−1, there is a broad feature which is attributed to electronic bands of the ferrous ion and low intensity sharp bands due to overtones of the OH stretching vibrations. It is also apparent from this region that Fe2+ substitutes for Mg2+. The intensity of bands at 7750 and 5200 cm−1 increases as the cation ratio increases in the NIR spectrum. Hydrotalcites with a magnesium amount 3 and 4 times greater than that of aluminium and iron combined, in the lower wavenumber region of the NIR spectrum, have very similar spectral profiles. This work has shown that hydrotalcites with different divalent/trivalent ratios can be synthesised and characterised by infrared spectroscopy.  相似文献   

19.
A drug (5-FU) was employed to treat the gastric carcinoma cells and induce apoptosis of the cancer cells. Raman spectra obtained from single gastric carcinoma cells and the induced apoptotic cells through scan-excitation mode were used to analyze the effectiveness of the treatment. The major difference of the apoptotic cells from the cancer cells are the reduction in intensities of vibration bands generated by cellular lipids, proteins and nucleic acids. In particular, large intensity reduction in nucleic vibrations at 782, 1092, 1320, 1340, and 1578 cm−1 was observed upon apoptosis of the gastric carcinoma cells. Up to 45% reduction in the magnitude of the 782 cm−1 peak in Raman spectra of the apoptotic cells was observed, which suggests the breakdown of phosphodiester bonds and DNA bases. We showed that the principal components analysis (PCA), a multivariate statistical tool, can be used to distinguish single apoptotic cells and gastric carcinoma cells based on their Raman spectra.  相似文献   

20.
Four new Hofmann–3-phenylpropylamine (3PPA) type complexes with chemical formulae M(3PPA)2Ni(CN)4 (M = Ni, Co, Cd, and Pd) have been prepared and their vibrational spectra are reported in the region of 4000–60 cm−1. The vibrational bands arising from 3PPA ligand molecule, the polymeric sheet and metal–ligand bands of the compounds are assigned. The thermal behaviour of these complexes is also provided using the DTA and TGA along with the magnetic susceptibility data. The results indicate that the monodentate 3PPA ligand molecule bonds to the metal atom of |M–Ni(CN)4| polymeric layers and hence the compounds are similar in structure to Hofmann-type complexes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号