共查询到20条相似文献,搜索用时 0 毫秒
1.
V. Yu. Belotserkovskaya E. Yu. Yakovleva 《Russian Journal of Physical Chemistry A, Focus on Chemistry》2011,85(5):851-856
Changes in the properties of the surface of poly(1-trimethylsilyl-1-propyne) (PTMSP) over time were studied by gas chromatography
combined with adsorption under static conditions. It was ascertained that a reduction in the volume of micropores in a polymer
results in the sorption-desorption processes occurring preferentially in mesopores. The formation of a more chemically uniform
surface leads to a considerable increase in the symmetry of chromatographic peaks and the efficiency of a column. These changes
allow us to broaden the range of compounds analyzed on columns with PTMSP. 相似文献
2.
The chromatographic properties of poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) were studied by gas chromatography using packed columns. The selectivity and efficiency of columns packed with PTMSP and
PPP were compared to the data obtained for columns with other known adsorbents and stationary phases. The McReynolds and Rohrschneider
constants, on the basis of which the polarity of the new phases was evaluated, were calculated. The results of the investigation
of chromatographic properties allow PTMSP to be brought in line with the polymeric adsorbents Porapak Q, Porapak QS, and Chromosorb
106, while PPP, with the methyphenylsilicon phases SE-52 and OV-3. 相似文献
3.
G. B. Vasilyev M. V. Mironova E. G. Litvinova V. V. Volkov V. S. Khotimskii V. G. Kulichikhin 《Polymer Science Series A》2013,55(8):510-517
The phase state and rheological properties of poly(1-trimethylsilyl-1-propyne) solutions in toluene and cyclohexane are studied. Samples of poly(1-trimethylsilyl-1-propyne) have the same backbone structure (cis-trans configuration ratio) but different molecular masses. Phase diagrams of these systems are derived via optical interferometry. It is found that they have an upper critical mixing temperature (UCMT) whose value exceeds the boiling points of the individual solvents. The two solvents exhibit limited solubility with respect to the studied polymer, and this parameter decreases with an increase in the molecular mass of the polymer. In the transition from dilute to concentrated solutions, the pattern of the rheological behavior changes from Newtonian to pseudoplastic. The concentration dependences of the zero-shear-rate viscosity of the solutions are typical for flexible-chain polymers. The viscous behavior of the poly(1-trimethylsilyl-1-propyne)-solvent system can be described through a single generalized viscosity-concentration relationship if dimensionless reduced values that take into account the contribution of the molecular mass, the nature of the solvent, and the pattern of intermolecular interactions in the solutions are used as the argument and the function. 相似文献
4.
Polevaya V. G. Bondarenko G. N. Shandryuk G. A. Dolzhikova V. D. Khotimskiy V. S. 《Russian Chemical Bulletin》2016,65(4):1067-1071
Russian Chemical Bulletin - A procedure of selective bromination of poly(1-trimethylsilyl-1-propyne) using N-bromosuccinimide as the brominating agent was developed. This method allows to obtain... 相似文献
5.
《Journal of membrane science》2005,246(1):13-25
Nanocomposite membranes based on poly(1-trimethylsilyl-1-propyne) (PTMSP) and silica were synthesized by sol–gel copolymerization of tetraethoxysilane (TEOS) with different organoalkoxysilanes in tetrahydrofuran solutions of PTMSP. The influence of the synthesis parameters (type and concentration of organoalkoxysilanes, temperature and time) on the silica conversion and the gas permeation performance of PTMSP–silica nanocomposite membranes was investigated and discussed in this paper. The nanocomposite membranes were characterized by single and mixed gas permeation, thermogravimetric analysis and scanning electron microscopy. The butane permeability and the butane/methane selectivity increased simultaneously when high silica conversion was obtained and the size of particle was in the range 20–40 nm. For the sake of comparison, nanocomposite membranes based on PTMSP were also prepared by dispersing silica particles with different functional groups into the PTMSP casting solution. The addition of fillers to the polymer matrix can be performed up to a higher content of silica (30% silica-filled PTMSP in contrast to 6 wt.% for the in situ-generated silica). In this case, the simultaneous increase in butane permeability and butane/methane selectivity was significantly higher when compared to the nanocomposite membranes prepared by sol–gel process. The addition of fillers with 50% of surface modification with hydrophobic groups (Si–C8H17 and Si–C16H33) seems not to lead to a significant increase of the butane/methane selectivity and butane permeability when compared to the silica with hydrophilic surface groups, probably because of the unfavorable polymer/filler interaction, leading to an agglomeration of the long n-alkyl groups at the surface of the polymer. An increase of butane permeability up to six-fold of unfilled polymer was obtained. 相似文献
6.
Poly(1-trimethylsilyl-1-propyne) [PTMSP], a high-free-volume glassy polymer, has the highest gas permeability of any known synthetic polymer. In contrast to conventional, low-free-volume, glassy polymers, PTMSP is more permeable to large, condensable organic vapors than to permanent gases. The organic-vapor/permanent-gas selectivity of PTMSP based on pure gas measurements is low. In organic-vapor/permanent-gas mixtures, however, the selectivity of PTMSP is much higher because the permeability of the permanent gas is reduced dramatically by the presence of the organic vapor. For example, in n-butane/methane mixtures, as little as 2 mol% n-butane (relative n-butane pressure 0.16) lowers the methane permeability 10-fold from the pure methane permeability. The result is that PTMSP shows a mixed-gas n-butane/methane selectivity of 30. This selectivity is the highest ever observed for this mixture and is completely unexpected for a glassy polymer. In addition, the gas mixture n-butane permeability of PTMSP is considerably higher than that of any known polymer, including polydimethylsiloxane, the most vapor-permeable rubber known. PTMSP also shows high mixed-gas selectivities and vapor permeabilities for the separation of chlorofluorocarbons from nitrogen. The unusual vapor permeation properties of PTMSP result from its very high free volume - more than 20% of the total volume of the material. The free volume elements appear to be connected, forming the equivalent of a finely microporous material. The large amount of condensable organic vapor sorbed into this finely porous structure causes partial blocking of the small free-volume elements, reducing the permeabilities of the noncondensable permanent gases from their pure gas values. 相似文献
7.
S. O. Ilyin V. V. Makarova M. P. Arinina E. G. Litvinova V. S. Khotimskii V. G. Kulichikhin 《Polymer Science Series A》2017,59(1):1-11
The phase equilibrium and rheological properties of poly(1-trimethylsilyl-1-propyne) solutions obtained with tantalum catalysts are studied. For three polymers with different molecular masses, phase diagrams are determined in a number of solvents. From these diagrams, the Hansen solubility parameters of poly(1-trimethylsilyl-1-propyne) are calculated by the method proposed in this work. Dilute solutions of poly(1-trimethylsilyl-1-propyne) behave as Newtonian liquids, whereas the viscosity of viscoelastic concentrated systems decreases as the shear rate grows. The molecular and rheological characteristics of studied poly(1-trimethylsilyl-1-propyne) samples are compared with the samples prepared with NbCl5 catalysts. Poly(1-trimethylsilyl-1-propyne) obtained with a catalytic system involving tantalum pentachloride is characterized by high intrinsic viscosity and solution viscosity compared to poly(1-trimethylsilyl-1-propyne) prepared with niobium catalyst. The difference in properties is due to the dissimilar ratios of cis and trans units in the samples. 相似文献
8.
Adsorption and chromatographic properties of the mixed stationary phase poly-(1-trimethylsilyl-1-propyne)/poly(1-phenyl-1-propyne)
(PTMSP/PPP) composed as 97: 3 by weight have been investigated by methods of low-temperature nitrogen adsorption and gas chromatography
on packed columns. The resultant phase has uniform mesoporous structure. The chromatographic properties of the mixed phase
are significantly different from the properties of the original porous polymers PTMSP and PPP. The adsorbent obtained by modifying
Chromosorb P NAW with a mixture of polymers provides the selective separation of chlorosubstituted, saturated, and aromatic
hydrocarbons. 相似文献
9.
《Journal of membrane science》2001,186(2):205-217
Poly(1-trimethylsilyl-1-propyne) (PTMSP) was synthesized using a TaCl5–Al(i-Bu)3 catalysis system. Pervaporation and sorption of n-butanol–water mixtures were studied, and the peculiarities of water and butanol co-permeation are discussed. The strong dependence of water partial flux (with a minimum at 1 wt.% butanol in feed) on butanol concentration in feed was observed. S-shaped isotherms of butanol and total sorption were found for PTMSP in 0–1 wt.% concentration range. It appears that blocking of PTMSP nanopores by high sorbing organic molecules controls the pervaporation of butanol from dilute aqueous solutions. Data are discussed in regard with PTMSP morphology. 相似文献
10.
I. Pinnau C. G. Casillas A. Morisato B. D. Freeman 《Journal of Polymer Science.Polymer Physics》1996,34(15):2613-2621
The gas permeation properties of poly(1-trimethylsilyl-1-propyne) (PTMSP), poly(1-phenyl-1-propyne) (PPP), and blends of PTMSP and PPP have been determined with hydrocarbon/hydrogen mixtures. For a glassy polymer, PTMSP has unusual gas permeation properties which result from its very high free volume. Transport in PPP is similar to that observed in conventional, low-free-volume glassy polymers. In experiments with n-butane/hydrogen gas mixtures, PTMSP and PTMSP/PPP blend membranes were more permeable to n-butane than to hydrogen. PPP, on the other hand, was more permeable to hydrogen than to n-butane. As the PTMSP composition in the blend increased from 0 to 100%, n-butane permeability increased by a factor of 2600, and n-butane/hydrogen selectivity increased from 0.4 to 24. Thus, both hydrocarbon permeability and hydrocarbon/hydrogen selectivity increase with the PTMSP content in the blend. The selectivities measured with gas mixtures were markedly higher than selectivities calculated from the corresponding ratio of pure gas permeabilities. The difference between mixed gas and pure gas selectivity becomes more pronounced as the PTMSP content in the blend increases. The mixed gas selectivities are higher than pure gas selectivities because the hydrogen permeability in the mixture is much lower than the pure hydrogen permeability. For example, the hydrogen permeability in PTMSP decreased by a factor of 20 as the relative propane pressure (p/psat) in propane/hydrogen mixtures increased from 0 to 0.8. This marked reduction in permanent gas permeability in the presence of a more condensable hydrocarbon component is reminiscent of blocking of permanent gas transport in microporous materials by preferential sorption of the condensable component in the pores. The permeability of PTMSP to a five-component hydrocarbon/hydrogen mixture, similar to that found in refinery waste gas, was determined and compared with published permeation results for a 6-Å microporous carbon membrane. PTMSP exhibited lower selectivities than those of the carbon membrane, but permeability coefficients in PTMSP were nearly three orders of magnitude higher. © 1996 John Wiley & Sons, Inc. 相似文献
11.
A. Morisato H. C. Shen S. S. Sankar B. D. Freeman I. Pinnau C. G. Casillas 《Journal of Polymer Science.Polymer Physics》1996,34(13):2209-2222
Pure gas and hydrocarbon vapor transport properties of blends of two glassy, polyacetylene-based polymers, poly(1-trimethylsilyl-1-propyne) [PTMSP] and poly(1-phenyl-1-propyne) [PPP], have been determined. Solid-state CP/MAS NMR proton rotating frame relaxation times were determined in the pure polymers and the blends. NMR studies show that PTMSP and PPP form strongly phase-separated blends. The permeabilities of the pure polymers and each blend were determined with hydrogen, nitrogen, oxygen, carbon dioxide, and n-butane. PTMSP exhibits unusual gas and vapor transport properties which result from its extremely high free volume. PTMSP is more permeable to large organic vapors, such as n-butane, than to small, permanent gases, such as hydrogen. PPP exhibits gas permeation characteristics of conventional low free volume glassy polymers; PPP is more permeable to hydrogen than to n-butane. In PTMSP/PPP blends, both n-butane permeability and n-butane/hydrogen selectivity increase as the PTMSP content of the blends increases. © 1996 John Wiley & Sons, Inc. 相似文献
12.
S. M. Matson K. R?tzke M. Q. Shaikh E. G. Litvinova S. M. Shishatskiy K. -V. Peinemann V. S. Khotimskiy 《Polymer Science Series A》2012,54(8):671-677
The relationship between poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-trimethylgermyl-1-propyne) (PTMGP) microstructure, gas permeability and structure of free volume is reported. n-Butane/methane mixed-gas permeation properties of PTMSP and PTMGP membranes with different cis-/trans-composition have been investigated. The n-butane/methane selectivities for mixed gas are by an order higher than the selectivities calculated from pure gas measurements (the mixed-gas n-butane/methane selectivities are 20?C40 for PTMSP and 22?C35 for PTMGP). Gas permeability and n-butane/methane selectivity essentially differ in polymers with different cis-/trans-composition. Positron annihilation lifetime spectroscopy investigation of PTMSP and PTMGP with different microstructure has determined distinctions in total amount and structure of free volume, i.e. distribution of free volume elements. The correlation between total amount of free volume and gas transport parameters is established: PTMSP and PTMGP with bigger free volume exhibit higher n-butane permeability and mixed-gas n-butane/methane selectivity. Such behavior is discussed in relation to the submolecular structure of polymers with different microstructure and sorption of n-butane in polymers with different free volume. 相似文献
13.
J. Bi G. P. Simon A. Yamasaki C. L. Wang Y. Kobayashi H. J. Griesser 《Radiation Physics and Chemistry》2000,58(5-6):563-566
Poly(1-trimethylsilyl-1-propyne) (PTMSP) membranes were fabricated by solvent casting from solutions of toluene, cyclohexane and tetrahydrofuran. The effects of the casting solvent on the physical structure of PTMSP were investigated using wide angle X-ray diffraction and positron annihilation lifetime spectroscopy. The permeability of oxygen, nitrogen and carbon dioxide through the cast membranes was also measured. It was found that the nature of the casting solvent markedly influenced the conformation and the free volume of PTMSP, which in turn affected the gas permeability of the cast membranes. 相似文献
14.
A. Morisato B. D. Freeman I. Pinnau C. G. Casillas 《Journal of Polymer Science.Polymer Physics》1996,34(11):1925-1934
Propane and n-butane sorption in blends of poly(1-trimethylsilyl-1-propyne) (PTMSP) and poly(1-phenyl-1-propyne) (PPP) have been determined. Solubilities of propane and n-butane increased as the PTMSP content in the blends increased. This result is consistent with the higher free volume of PTMSP-rich blends and the better thermodynamic compatibility between PTMSP and these hydrocarbons. Propane and n-butane sorption isotherms were well described by the dual-mode model for sorption in glassy polymers. PTMSP/PPP blends are strongly phase-separated, heterogeneous materials. A noninteracting domain model developed for sorption in phase-separated glassy polymer blends suggests that sorption in the Henry's law regions (i.e., the equilibrium, dense phase of the blends) is consistent with the model. However, Langmuir capacity parameters in the blends are lower than predicted from the domain model, suggesting that the amount of nonequilibrium excess free volume associated with the Langmuir sites depends on blend composition. © 1996 John Wiley & Sons, Inc. 相似文献
15.
M. V. Chirkova P. V. Pivovarov E. G. Litvinova V. S. Khotimskii 《Polymer Science Series A》2006,48(5):489-497
Poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) are metallated using normal and secondary butyllithium chelate complexes with tetramethylethylenediamine and superbases based on complexes of normal and secondary butyllithium with potassium tert-pentoxide as metallating agents. Optimal conditions ensuring metallation of poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) with a high yield without degradation of macrochains are determined. Poly(vinyltrimethylsilane) and poly(1-trimethylsilyl-1-propyne) are functionalized via reactions of metallated polymers with CO2, trimethylsilyl chlorosulfone, diethyl disulfide, and ethylene oxide. COOH, SO3H, OH, and thioester groups are introduced into poly(vinyltrimethylsilane), and SO3H and COOH groups are incorporated into poly(1-trimethylsilyl-1-propyne). Upon introduction of carboxyl groups into poly(vinyltrimethylsilane), its hydrophilicity and permselectivity with respect to H2O/N2, H2O/H2, and H2O/CH4 pairs increase. The introduction of SO3H groups into poly(1-trimethylsilyl-1-propyne) and poly(vinyltrimethylsilane) leads to the appearance of proton conductivity of these polymers. 相似文献
16.
Yu Nagase Tomoko Ueda Kiyohide Matsui Masaki Uchikura 《Journal of Polymer Science.Polymer Physics》1991,29(2):171-179
In order to improve the selectivity and the stability and the stability for gas permeation of poly (1-trimethylsilyl-1-propyne) (PTMSP) membrane, it was chemically modified by grafting polydimethylsiloxane (PDMS) chains. The graft copolymers were synthesized by four different methods via metallation of PTMSP with n-butyllithium. PDMS content of the graft co-polymers was controlled in the range of 4–92 mol %. Very tough, thin membranes could be prepared from these graft copolymers using a solvent casting method. Thermal property and gas permeability of the copolymer membranes thus obtained were evaluated. These membranes were relatively thermally stable, and the softening points were over about 150°C. Oxygen permeability coefficients Po2 and selectivity Po2/PN2 of PTMSP/PDMS graft copolymers depended on the PDMS content, the former was in the range of 1 X 10?8 to 2 × 10?7 cm3 (STP)· cm/(cm2· s · cm. Hg) and the latter was 2.0–3.1. Minimum values of PO2 and PN2 occured at PDMS content of about 55 mol %. The introduction of more than 60 mol % of PDMS resulted in oxygen permeability coefficient which was maintained for more than one moth (PO2 = 2 ? 6 × 10 ?8 cm 3 (STP)· cm/(cm2·s·cm Hg), PO2/PN2 = 2.3–2.7). 相似文献
17.
Scott Matteucci Victor A. Kusuma David Sanders Steve Swinnea Benny D. Freeman 《Journal of membrane science》2008
Titanium dioxide (TiO2) nanoparticles were dispersed via solution processing in poly(1-trimethylsilyl-1-propyne) (PTMSP) to form nanocomposite films. Nanoparticle dispersion was investigated using atomic force microscopy and transmission electron microscopy. At low-particle loadings, nanoparticles were dispersed individually and in nanoscale aggregates. At high-particle loadings, some nanoparticles formed micron-sized aggregates. The gas transport and density exhibited a strong dependence on nanoparticle loading. At low-TiO2 loadings, the composite density was similar to or slightly higher than that predicted by a two-phase additive model. However, at particle loadings exceeding approximately 7 nominal vol.%, the density was markedly lower than predicted, suggesting that the particles induced the creation of void space within the nanocomposite. For example, when the TiO2 nominal volume fraction was 0.35, the polymer/particle composite density was 40% lower than expected based on a two-phase additive model for density. At low-nanoparticle loading, light gas permeability was lower than that of the unfilled polymer. At higher nanoparticle loadings, light gas permeability (i.e., CO2, N2, and CH4) increased to more than four times higher than in unfilled PTMSP. At most, selectivity changed only slightly with particle loading. 相似文献
18.
Kazukiyo Nagai Akon Higuchi Tsutomu Nakagawa 《Journal of Polymer Science.Polymer Physics》1995,33(2):289-298
A significant reduction in the gas permeability of the poly(1-trimethylsilyl-1-propyne) (PMSP) membrane was investigated in terms of the membrane thickness and the storage environment. The effects of physical aging were observed with thinner membranes and under vacuum conditions compared with storage in air. The decrease in the permeability coefficient was dependent on the decrease in the hole saturation constant of Langmuir adsorption (C'H), which is related to the volume of the microvoids. Physical aging in the PMSP membrane affected not only the glassy domain but also the rubbery one. To stabilize the permeability of the PMSP membrane, a poly(1-trimethylsilyl-1-propyne-co-1-phenyl-1-propyne) [poly(TMSP-co-PP)] membrane was prepared. Poly(TMSP-co-PP) has the same unit of poly(1-phenyl-1-propyne), which membrane has stable permeability. The poly(TMSP-co-PP) with less than 20 mol % PP content was estimated to be a random copolymer based on theoretical gas permeation analysis. In the poly(TMSP-co-PP) membrane, the relation between the PP content and C'H was similar to the relation between the PP content and the gas permeability. The stability of the permeability was dependent on the PP content. The poly(TMSP-co-PP) membrane containing 10 mol % PP had both high permeability and good stability under some of the aging conditions performed in this work. © 1995 John Wiley & Sons, Inc. 相似文献
19.
H. Nishide H. Kawakami Y. Sasame K. Ishiwata E. Tsuchida 《Journal of polymer science. Part A, Polymer chemistry》1992,30(1):77-82
The combination membrane of poly(1-trimethylsilyl-1-propyne) with enormously high permeability and poly(vinylimidazole)-bound porphinatocobalt with selective oxygenbinding ability was prepared. Oxygen transport through the membrane was facilitated in terms of oxygen transport via the latter domain as a fixed oxygen-carrier, and this oxygen permeability maintained for a month. 相似文献
20.
G. F. Kolbina I. N. Shtennikova A. E. Grishchenko V. S. Khotimsky 《Polymer Science Series A》2006,48(10):1110-1114
The optical properties of poly(1-trimethylsilyl-1-propyne) solutions in solvents possessing optical anisotropy have been studied with dynamic birefringence measurements. In solvents characterized by refractive indexes different from the refractive index of a dry polymer, the optical form effect has been discovered. This effect is determined by the shape asymmetry of a macromolecular segment and its rigidity. Estimates showed that the length of the statistical segment, which characterizes the thermodynamic rigidity of the macromolecular chains under study, is 82 × 10?8 cm. The shear optical coefficient for solutions of the test polymer in an anisotropic solvent is markedly higher than the corresponding value in an isotropic solvent. This difference is related to the orientation of anisotropic solvent molecules along the main chain of a macromolecule by their highest polarizability axis. Under the assumption that the orientational order of solvent molecules relative to chain macromolecules is independent of the thermodynamic rigidity of chain molecules, the size of the statistical segment of the macromolecules in question has been independently estimated as 98 × 10?8 cm. 相似文献