首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Intracochlear pressure is calculated from a physiologically based, three-dimensional gerbil cochlea model. Olson [J. Acoust. Soc. Am. 103, 3445-3463 (1998); 110, 349-367 (2001)] measured gerbil intracochlear pressure and provided approximations for the following derived quantities: (1) basilar membrane velocity, (2) pressure across the organ of Corti, and (3) partition impedance. The objective of this work is to compare the calculations and measurements for the pressure at points and the derived quantities. The model includes the three-dimensional viscous fluid and the pectinate zone of the elastic orthotropic basilar membrane with dimensional and material property variation along its length. The arrangement of outer hair cell forces within the organ of Corti cytoarchitecture is incorporated by adding the feed-forward approximation to the passive model as done previously. The intracochlear pressure consists of both the compressive fast wave and the slow traveling wave. A Wentzel-Kramers-Brillowin asymptotic and numerical method combined with Fourier series expansions is used to provide an efficient procedure that requires about 1 s to compute the response for a given frequency. Results show reasonably good agreement for the direct pressure and the derived quantities. This confirms the importance of the three-dimensional motion of the fluid for an accurate cochlear model.  相似文献   

2.
Experimental measurements of the latency of transient evoked otoacoustic emission and auditory brainstem responses are compared, to discriminate between different cochlear models for the backward acoustic propagation of otoacoustic emissions. In most transmission-line cochlear models otoacoustic emissions propagate towards the base as a slow transverse traveling wave, whereas other models assume fast backward propagation via longitudinal compression waves in the fluid. Recently, sensitive measurements of the basilar membrane motion have cast serious doubts on the existence of slow backward traveling waves associated with distortion product otoacoustic emissions [He et al., Hear. Res. 228, 112-122 (2007)]. On the other hand, recent analyses of "Allen-Fahey" experiments suggest instead that the slow mechanism transports most of the otoacoustic energy [Shera et al., J. Acoust. Soc. Am. 122, 1564-1575 (2007)]. The two models can also be discriminated by comparing accurate estimates of the otoacoustic emission latency and of the auditory brainstem response latency. In this study, this comparison is done using human data, partly original, and partly from the literature. The results are inconsistent with fast otoacoustic propagation, and suggest that slow traveling waves on the basilar membrane are indeed the main mechanism for the backward propagation of the otoacoustic energy.  相似文献   

3.
Quantitative ultrasonic characterization of cancellous bone can be complicated by artifacts introduced by analyzing acquired data consisting of two propagating waves (a fast wave and a slow wave) as if only one wave were present. Recovering the ultrasonic properties of overlapping fast and slow waves could therefore lead to enhancement of bone quality assessment. The current study uses Bayesian probability theory to estimate phase velocity and normalized broadband ultrasonic attenuation (nBUA) parameters in a model of fast and slow wave propagation. Calculations are carried out using Markov chain Monte Carlo with simulated annealing to approximate the marginal posterior probability densities for parameters in the model. The technique is applied to simulated data, to data acquired on two phantoms capable of generating two waves in acquired signals, and to data acquired on a human femur condyle specimen. The models are in good agreement with both the simulated and experimental data, and the values of the estimated ultrasonic parameters fall within expected ranges.  相似文献   

4.
Intracellular recordings were made from inner hair cells and basilar membrane motion was measured at a similar place, but in different preparations, in the first turn of the guinea pig cochlea. Potential recordings were made using glass microelectrodes and mechanical measurements were made using the M?ssbauer technique. Intensity functions of DC receptor potential and basilar membrane velocity in animals with good and poor thresholds are presented. In animals with good thresholds, stimuli at and above the characteristic frequency produce similarly compressive input-output functions for both inner hair cell receptor potentials and basilar membrane motion. However, for frequencies lower than the characteristic frequency, receptor potential input-output functions obtained from animals in good and poor condition show saturation at high stimulus intensities at which basilar membrane motion is linear. This discrepancy is believed to be due to a nonlinear inner hair cell transduction mechanism. We propose that nonlinearity observed in receptor potential input-output functions is a consequence of the simple cascading of a frequency-dependent nonlinear mechanical input and a frequency-independent nonlinear transduction process.  相似文献   

5.
Simple three-dimensional passive and active models of the human basilar membrane were built, solved using the Finite Element Method and tested. In the active model an active mechanism connected with electromotility of outer hair cells was included. In the active model the active mechanism was incorporated in the form of additional, local pressure load. In the passive model the active mechanism was neglected. Hydrodynamic coupling between the cochlear partition and cochlear fluid was excluded in both models. Geometrical and physical parameters of the model were chosen to be adequate to those of humans in the best possible way. However, some of these parameters had to be estimated. The models were tested by calculation of typical curves known from cochlear measurements performed mostly on animals. For the passive model a linear input-output function and very small values of the basilar membrane velocities were obtained. This behaviour is to be expected for the passive model and for the basilar membrane in the poor physiological condition. For the active model the compressed input-output functions, tuning curves, isointensity curves and reasonable BM velocities were obtained. Possible inadequacies, which could explain the differences between numerical results and measurements were described.  相似文献   

6.
王婷  崔志文  刘金霞  王克协 《物理学报》2018,67(11):114301-114301
考虑孔隙流体中含有少量气泡,且气泡在声波作用下线性振动,研究声波在这种孔隙介质中的传播特性.本文先由流体质量守恒方程和孔隙度微分与流体压力微分的关系推导出了含有气泡形式的渗流连续性方程;在处理渗流连续性方程中的气体体积分数时间导数时,应用Commander气泡线性振动理论导出气体体积分数时间导数与流体压强时间导数的关系,进而得到了修正的Biot形式的渗流连续性方程;最后结合Biot动力学方程求得了含气泡形式的位移场方程,便可得到两类纵波及一类横波的声学特性.通过对快、慢纵波的频散、衰减及两类波引起的流体位移与固体位移关系的考察,发现少量气泡的存在对快纵波和慢纵波的传播特性影响较大.  相似文献   

7.
The "classical" view on wave propagation is that propagating waves are possible in both directions along the length of the basilar membrane and that they have identical properties. Results of several recently executed experiments [T. Ren, Nat. Neurosci. 2, 333-334 (2004) and W. X. He, A. L. Nuttall, and T. Ren, Hear. Res., 228, 112-122 (2007)] appear to contradict this view. In the current work measurements were made of the velocity of the guinea-pig basilar membrane (BM). Distortion products (DPs) were produced by presenting two primary tones, with frequencies below the characteristic frequency f(0) of the BM location at which the BM measurements were made, with a constant frequency ratio. In each experiment the phase of the principal DP, with frequency 2f(1)-f(2), was recorded as a function of the DP frequency. The results indicate that the DP wave going from the two-tone interaction region toward the stapes is not everywhere traveling in the reverse direction, but also in the forward direction. The extent of the region in which the forward wave occurs appears larger than is accounted for by classical theory. This property has been termed "inverted direction of wave propagation." The results of this study confirm the wave propagation findings of other authors. The experimental data are compared to theoretical predictions for a classical three-dimensional model of the cochlea that is based on noise-response data of the same animal. Possible physical mechanisms underlying the findings are discussed.  相似文献   

8.
The presence of two longitudinal waves in porous media is predicted by Biot's theory and has been confirmed experimentally in cancellous bone. When cancellous bone samples are interrogated in through-transmission, these two waves can overlap in time. Previously, the Modified Least-Squares Prony's (MLSP) method was validated for estimation of amplitudes, attenuation coefficients, and phase velocities of fast and slow waves, but tended to overestimate phase velocities by up to about 5%. In the present paper, a pre-processing chirp filter to mitigate the phase velocity bias is derived. The MLSP/chirp filter (MLSPCF) method was tested for decomposition of a 500 kHz-center-frequency signal containing two overlapping components: one passing through a low-density-polyethylene plate (fast wave) and another passing through a cancellous-bone-mimicking phantom material (slow wave). The chirp filter reduced phase velocity bias from 100 m/s (5.1%) to 69 m/s (3.5%) (fast wave) and from 29 m/s (1.9%) to 10 m/s (0.7%) (slow wave). Similar improvements were found for 1) measurements in polycarbonate (fast wave) and a cancellous-bone-mimicking phantom (slow wave), and 2) a simulation based on parameters mimicking bovine cancellous bone. The MLSPCF method did not offer consistent improvement in estimates of attenuation coefficient or amplitude.  相似文献   

9.
This Letter is an extension to a multilayer model of porous bone first proposed by Hughes et al. [Ultrasound Med. Biol. 25, 811-821 (1999)]. Both slow and fast compressional waves propagate when the acoustic wave propagation is parallel to the trabecular alignment. However, a slow wave disappears at high refraction angles. To explain this phenomenon, the multilayer model is extended to compute group velocity surface and arrival times with an angle. Two major effects are highlighted as the refraction angle increases. First, the energy of the slow wave is refracted from the phase propagation direction. Second, the signals of fast and slow waves overlap. As a consequence, the slow wave may not be observed for a refraction angle greater than 40 degrees, which is in agreement with previous experimental data published by Hughes et al. and others.  相似文献   

10.
马琦  胡文祥  徐琰锋  王浩 《物理学报》2017,66(8):84302-084302
理论分析了脉冲激光激发的流体-分层固体结构声场,在此基础上数值计算了流体-慢层快底固体和流体-快层慢底固体结构液-固界面Scholte波的频散特性与瞬态响应.数值结果显示,对于流体-慢层快底结构,Scholte界面波呈现出正常频散特性;而对于流体-快层慢底结构,Scholte波在较小的频厚积范围呈反常频散特性.理论瞬态信号也显示了同样的特性.采用脉冲激光激励,用水听器接收的方式进行了Scholte界面波的实验测量.实验测量和分析结果与理论结果有很好的一致性.此工作可为水浸检测条件下镀层与薄膜材料参数的超声无损表征、海底沉积物参数反演等应用提供理论基础.  相似文献   

11.
Previous studies have shown that interference between fast waves and slow waves can lead to observed negative dispersion in cancellous bone. In this study, the effects of overlapping fast and slow waves on measurements of the apparent attenuation as a function of propagation distance are investigated along with methods of analysis used to determine the attenuation properties. Two methods are applied to simulated data that were generated based on experimentally acquired signals taken from a bovine specimen. The first method uses a time-domain approach that was dictated by constraints imposed by the partial overlap of fast and slow waves. The second method uses a frequency-domain log-spectral subtraction technique on the separated fast and slow waves. Applying the time-domain analysis to the broadband data yields apparent attenuation behavior that is larger in the early stages of propagation and decreases as the wave travels deeper. In contrast, performing frequency-domain analysis on the separated fast waves and slow waves results in attenuation coefficients that are independent of propagation distance. Results suggest that features arising from the analysis of overlapping two-mode data may represent an alternate explanation for the previously reported apparent dependence on propagation distance of the attenuation coefficient of cancellous bone.  相似文献   

12.
A set of experiments was conducted using the M?ssbauer effect to determine the vibratory characteristics of the basilar membrane, Reissner's membrane, the malleus, incus, and oval window in squirrel monkey. A few measurements were also made in guinea pig in the basal cochlear region. The nonlinear vibration properties of the basilar membrane are described in detail for the midfrequency region in the squirrel monkey. Only in this region have nonlinear effects been observed. A comparison of mechanical and neural data indicates good qualitative agreement.  相似文献   

13.
Outer hair cells are critical to the amplification and frequency selectivity of the mammalian ear acting via a fine mechanism called the cochlear amplifier, which is especially effective in the high-frequency region of the cochlea. How this mechanism works under physiological conditions and how these cells overcome the viscous (mechanical) and electrical (membrane) filtering has yet to be fully understood. Outer hair cells are electromotile, and they are strategically located in the cochlea to generate an active force amplifying basilar membrane vibration. To investigate the mechanism of this cell's active force production under physiological conditions, a model that takes into account the mechanical, electrical, and mechanoelectrical properties of the cell wall (membrane) and cochlear environment is proposed. It is shown that, despite the mechanical and electrical filtering, the cell is capable of generating a frequency-tuned force with a maximal value of about 40 pN. It is also found that the force per unit basilar membrane displacement stays essentially the same (40 pNnm) for the entire linear range of the basilar membrane responses, including sound pressure levels close to hearing threshold. Our findings can provide a better understanding of the outer hair cell's role in the cochlear amplifier.  相似文献   

14.
石建成  郑佩  高哲 《计算物理》2019,36(3):298-304
针对弹性波衰减与速度频散问题,基于Pride和Berryman的介观非均匀双重孔隙介质理论模型,推导一组用位移表示,另一组用位移及孔压表示的全新形式的耦合动力学方程组,并基于双孔介质模型,推导出弹性波的相速度与逆品质因子的解析式,重点讨论介观尺度下的局域流动对弹性波传播特性的影响.数值算例表明:快波的速度随着频率的增加而迅速增加,且介观流动损失比Biot损失至少高一个数量级;同时局域流对慢波也有着不同程度的影响.证实了局域流是波能损失和相速度频散的主要因素.  相似文献   

15.
Within the viscosity-extended Biot framework of wave propagation in porous media, the existence of a slow shear wave mode with non-vanishing velocity is predicted. It is a highly diffusive shear mode wherein the two constituent phases essentially undergo out-of-phase shear motions (slow shear wave). In order to elucidate the interaction of this wave mode with propagating wave fields in an inhomogeneous medium the process of conversion scattering from fast compressional waves into slow shear waves is analyzed using the method of statistical smoothing in randomly heterogeneous poroelastic media. The result is a complex wave number of a coherent plane compressional wave propagating in a dynamic-equivalent homogeneous medium. Analysis of the results shows that the conversion scattering process draws energy from the propagating wave and therefore leads to attenuation and phase velocity dispersion. Attenuation and dispersion characteristics are typical for a relaxation process, in this case shear stress relaxation. The mechanism of conversion scattering into the slow shear wave is associated with the development of viscous boundary layers in the transition from the viscosity-dominated to inertial regime in a macroscopically homogeneous poroelastic solid.  相似文献   

16.
Electromagnetic wave propagation in a circular waveguide with an axially-placed discharge tube is discussed. Fundamental properties of slow and fast waves are derived from the dispersion formula and a simple oscilloscopic method for the identification of these two waves is demonstrated. The electron density is obtained from the measured phase velocity by numerical calculation of dispersion equation (for real plasma permittivity). Collision frequency is then found from the attenuation factor.  相似文献   

17.
The responses of the malleus and the stapes to sinusoidal acoustic stimulation have been measured in the middle ears of anesthetized chinchillas using the M?ssbauer technique. With "intact" bullas (i.e., closed except for venting via capillary tubing), the vibrations of the tip of the malleus reach a maximal peak velocity of about 2 mm/s in responses to 100-dB SPL tones in the frequency range 500-6000 Hz; vibration velocity diminishes toward lower frequencies with a slope of about 6 dB/oct. Opening the bulla widely increases the responses to low-frequency stimuli by as much as 16 dB. At low frequencies, malleus response sensitivity with either open or intact bullas far exceeds all previous measurements in cats and matches or exceeds such measurements in guinea pigs. Whether measured in open or intact bullas, phase-versus-frequency curves closely approximate those predicted from the magnitude-versus-frequency curves by minimum phase theory. The stapes responses are similar to those of the malleus, except that stapes response magnitude is lower, on the average, by 7.5 dB at frequencies below 2 kHz and 10.7 dB at 2 kHz and above. Comparison of the responses of the middle ear with those of the basilar membrane at a site 3.5 mm from the stapes indicates that, at frequencies below 150 Hz, the basilar membrane displacement is proportional to stapes acceleration. At frequencies between 150 and 2000 Hz, basilar membrane displacement is proportional to stapes velocity.  相似文献   

18.
A linear mathematical model is proposed which will account for the differences observed between mechanically measured data of Rhode (1971) for basilar membrane motion, and the responses of neural tuning curves (Kiang et al., 1974). We show that theoretical tuning curves may be derived from mechanical responses by forming the difference between the pressure across the basilar membrane and its displacement. Some ramifications of this proposal are discussed. We then propose a hypothetical physical model which could perform such a function.  相似文献   

19.
A simple oscillatory, slightly compressible, fluid flow model in a thick-walled piezoelectric tube used in a drop-on-demand inkjet print head is developed from the point of view of fluid-structure interaction to take account of pressure wave propagation and pressure loading opposing wall motion. A frequency sweep is performed computationally using the model revealing the first acoustic fluid-structure resonance frequency and the influence of fluid viscosity. The validity of the model, with given information on the speed of sound in a fluid, is evaluated by comparing the theoretically predicted resonance frequency to the experimentally measured resonance frequency. In addition, the intrinsic speed of sound can be easily computed using the measured acoustic resonance frequency and this computed speed of sound agrees closely with speeds of sound reported in the literature.  相似文献   

20.
In this study, a three-dimensional finite-element model (FEM) of the human middle ear was established, including features of the middle ear which were not considered in the previous model, i.e., the ligaments, tendons, I-S joint, loading of the cochlea, external auditory meatus (EAM), middle-ear cavities, etc. The unknown mechanical properties of these parts and the boundary conditions were determined so that the impedance obtained from the FEM analysis resembled the measurement values. The validity of this model was confirmed by comparing the motion of the tympanic membrane and ossicles obtained by this model with the measurement data, and the effects of the newly considered features on the numerically obtained results were examined. By taking the ligaments and tendons into account and assuming that the cochlea acts as a damper, with this model it was possible to realistically reproduce complex ossicular chain movement. It was found that the middle-ear cavities did not affect the vibration mode of the tympanic membrane. Although the EAM enhanced the sound pressure applied to the tympanic membrane compared with that at the entrance of the EAM, the pressure distribution on the surface of the tympanic membrane was not affected by the EAM.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号