首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
UV light irradiation effect on the structural transformation in a self-assembled monolayer of 4-(amyloxy)cinnamic acid (AOCA) on Au(111) has been investigated by using electrochemical scanning tunneling microscopy (ECSTM), cyclic voltammetry, and infrared (IR) spectroscopy. A well-defined 4-(amyloxy)cinnamic acid adlayer with a (4 x 11) symmetry was first prepared on Au(111). After UV-light irradiation onto the adlayer, a new adlayer is observed with different molecular arrangement and a symmetry of (5 x 8). On the basis of the results from high-resolution STM image and photochemical reaction, a dimerizaion of AOCA molecules in the adlayer with structural transformation is concluded. Schematic models have been proposed for the unirradiated and irradiated adlayers, respectively. The direct evidence at molecular level about photodimerization of cinnamic acid on metal substrate is presented.  相似文献   

2.
A detailed study on the time-dependent organization of a decanethiol self-assembled monolayer (SAM) at a designed solution concentration onto a Au(111) surface has been performed with scanning tunneling microscopy (STM). The SAMs were prepared by immersing Au(111) into an ethanol solution containing 1 microM decanethiol with different immersion times. STM images revealed the formation process and adlayer structure of the SAMs. It was found that the molecules self-organized into adlayers from random separation to a well-defined structure. From 10 s, small domains with ordered molecular organization appeared, although random molecules could be observed on Au(111) at the very initial stage. At 30 s, the SAM consisted of uniform short stripes. Each stripe consisted of sets of decanethiol mainly containing eight molecules. With the immersion time increasing, the length of the stripes increased. At 5 min, the alkyl chains overlapped each other between the adjacent stripes, indicating the start of a stacked process. After immersing Au(111) in decanethiol solution for 3 days, a densely packed adlayer with a (radical 3 x radical 3)R30 degrees structure was observed. The formation process and structure of decanethiol SAMs are well related to sample preparation conditions. The wettability of the decanethiolate SAM-modified Au(111) surface was also investigated.  相似文献   

3.
Khalil MM  Tanase I  Luca C 《Talanta》1985,32(12):1151-1152
The log β1 values at 25° for the reaction in aqueous solution of Tl(I) with 15-crown-5, benzo-15-crown-5, 18-crown-6 and dicyclohexyl-18-crown-6 (isomer cis-syn-cis) have been determined by d.c. and a.c. polarographic measurements.  相似文献   

4.
利用电化学技术及扫描隧道显微镜(STM),于0.1mol/LHClO4溶液中研究了Schiff碱N-aete-N在单晶Au(111)面上所形成的自组装单分子膜(SAMs)的电化学性质及结构.N-aete-N在Au(111)电极表面的吸附抑制了金的阳极氧化,同时使固/液界面双层电容明显降低.观察到N-aete-NSAMs的高分辨STM图像.N-aete-N分子在Au(111)表面上以(6×7)结构单胞呈二维有序排列,其表面浓度为5.5×10-11mol/cm2.  相似文献   

5.
Adlayers of 15-crown-5-ether-substituted cobalt(II) phthalocyanine (CoCRPc) were prepared by immersion of either Au(111) or Au(100) substrate into benzene-ethanol (9:1 v/v) mixed solutions containing CoCRPc. In situ STM imaging was carried out after transferring the CoCRPc-modified Au crystals into aqueous HClO(4) solution. The packing arrangement of the CoCRPc array on Au(111) was determined to be p(8 x 4 radical 3R - 30 degrees ), and the internal structure was clearly observed by high-resolution STM. Two adlayer structures of CoCRPc, (8 x 9) and (4 radical 5 x 4 radical 5)R26.7 degrees, were found on the Au(100)-(1 x 1) terrace. In the presence of 1 mM Ca(2+), two Ca(2+) ions were trapped in two diagonally located 15-crown-5-ether moieties of each CoCRPc molecule on Au(111), whereas encapsulation of Ca(2+) ions was not seen in the CoCRPc arrays on the Au(100)-(1 x 1) surface. The present study demonstrates that the relationship between crown moieties of CRPc and the underlying Au lattice is important in the trapping of Ca(2+) ions in crown rings.  相似文献   

6.
《Supramolecular Science》1996,3(1-3):103-109
Adsorption and desorption processes of self-assembled monolayers (SAMs) have been studied on an Au(111) surface by scanning tunnelling microscopy (STM), atomic force microscopy (AFM), X-ray photo-electron spectroscopy (XPS) and thermal desorption spectroscopy (TDS). At the initial growth stage, the ordered nucleation of SAM located at the herringbone turns of the Au(111) − (22 × √3) surface reconstruction and diffusion-controlled domain formation have been imaged by STM and AFM. Details of the oxidation process in UV desorption were also investigated by XPS. In addition, the dimerization reaction during desorption was confirmed by TDS for the first time in the alkanethiol SAM system.  相似文献   

7.
The reaction of hydroxy-substituted benzo-15(18)-crown-5(6) ether or benzo-18-crown-6 ether with β-phenylcinnamaldehyde in the presence of titanium tetraethoxide yielded crown-annulated 2,2-diphenylbenzopyrans. The compounds are photochromic, and the spectral characteristics of their colored form are unusual for this class of chromenes.  相似文献   

8.
The aggregation and reaction of 17,19-hexatriacontadiyne molecules are studied on a Au(111) surface. The molecular orientation and arrangement are elucidated by infrared reflection absorption spectroscopy (IRAS) and scanning tunneling microscopy (STM). A vapor-deposited monolayer and a multilayered film formed by adsorption from the solution provide IRA spectra with bands due to the antisymmetric and symmetric stretching of methylenes in the gauche conformation. After the adsorbed film is rinsed with the solvent, however, the spectrum loses the gauche bands and is characterized by the enhanced C-H(distal) and C-H(proximal) stretching bands, which means that all-trans molecules are laid flat. Only STM images for the rinsed film display columnar structures on the herringbones of the reconstructed Au(111) surface; the alkyl chain direction is found to be parallel to the Au atom row. The results indicate that an ordered monolayer is formed first at the liquid-solid interface, and then, disordered overlayers with the gauche conformation are grown but removed by a rinse. Upon exposure to UV light, thus obtained monomer columns are converted into oligomers with flexible backbones and an increased gauche population in the alkyl chains, which resemble red phase polydiacetylenes in LB films.  相似文献   

9.
The on‐surface polymerization of 1,3,6,8‐tetrabromopyrene (Br4Py) on Cu(111) and Au(111) surfaces under ultrahigh vacuum conditions was investigated by a combination of scanning tunneling microscopy (STM), X‐ray photoelectron spectroscopy (XPS) and density functional theory (DFT) calculations. Deposition of Br4Py on Cu(111) held at 300 K resulted in a spontaneous debromination reaction, generating the formation of a branched coordination polymer network stabilized by C?Cu?C bonds. After annealing at 473 K, the C?Cu?C bonds were converted to covalent C?C bonds, leading to the formation of a covalently linked molecular network of short oligomers. In contrast, highly ordered self‐assembled two‐dimensional (2D) patterns stabilized by both Br?Br halogen and Br?H hydrogen bonds were observed upon deposition of Br4Py on Au(111) held at 300 K. Subsequent annealing of the sample at 473 K led to a dissociation of the C?Br bonds and the formation of disordered metal‐coordinated molecular networks. Further annealing at 573 K resulted in the formation of covalently linked disordered networks. Importantly, we found that the chosen substrate not only plays an important role as catalyst for the Ullmann reaction, but also influences the formation of different types of intermolecular bonds and thus, determines the final polymer network morphology. DFT calculations further support our experimental findings obtained by STM and XPS and add complementary information on the reaction pathway of Br4Py on the different substrates.  相似文献   

10.
To probe the effects of deposition temperature on the formation and structural order of self-assembled monolayers (SAMs) on Au(111) prepared by vapor deposition of 2-(2-methoxyethoxy)ethanethiol (CH3O(CH2)2O(CH2)2SH, EG2) for 24 h, we examined the surface structure and electrochemical behavior of the resulting EG2 SAMs using scanning tunneling microscopy (STM) and cyclic voltammetry (CV). STM observations clearly revealed that EG2 SAMs vapor-deposited on Au(111) at 298 K were composed of a disordered phase on the entire Au surface, whereas those formed at 323 K showed improved structural order, showing a mixed phase of ordered and disordered phases. Moreover, at 348 K, uniform and highly ordered EG2 SAMs on Au(111) were formed with a (2 × 3√3) packing structure. CV measurements showed sharp reductive desorption (RD) peaks at −0.818, −0.861, and −0.880 V for EG2 SAM-modified Au electrodes formed at 298, 323, and 348 K, respectively. More negative potential shifts of RD peaks with increasing deposition temperature are attributed to an increase in van der Waals interactions between EG2 molecular backbones resulting from the improved structural quality of EG2 SAMs. Our results obtained herein provide new insights into the formation and thermally driven structural order of oligo(ethylene glycol)-terminated SAMs vapor-deposited on Au(111).  相似文献   

11.
The advent of scanning tunneling microscopy (STM) has permitted a detailed atomic view of organic molecules adsorbed on solid surfaces. In this work, we make use of the STM to provide an unprecedented direct single-molecule perspective on the cis-trans photoisomerization of stilbene molecules within ordered monolayers physisorbed on the Ag/Ge(111)-( radical3x radical3)R30 degrees surface. The STM view of the molecular structure transformation upon irradiation provides direct evidence for the generally accepted one-bond-flip mechanism proposed for the photoisomerization process. We also find that the surface environment produces a profound effect on the reaction mechanism. The reaction is observed to proceed mainly through pairs of co-isomerizing molecules situated at domain boundaries. To explain these observations, we propose a mechanism whereby excitation migrates to the domain boundary and the reaction occurs through a biexciton reaction pathway.  相似文献   

12.
A series of crown ether appended macrocyclic amines has been prepared comprising benzo-12-crown-4, benzo-15-crown-5, or benzo-18-crown-6 attached to a diamino-substituted cyclam. The Co(III) complexes of these three receptors have been prepared and characterized spectroscopically and structurally. Crystal structures of each receptor in complex with an alkali metal ion and structures of the benzo-12-crown-4 and benzo-15-crown-5-receptors without guest ions are reported. 2D NMR and molecular mechanics modeling have been used to examine conformational variations upon guest ion complexation. Addition of cations to these receptors results in an appreciable anodic shift in the Co(III/II) redox potential, even in aqueous solution, but little cation selectivity is observed. Evidence for complex formation has been corroborated by (23)Na and (7)Li NMR spectroscopy and electrospray mass spectrometry.  相似文献   

13.
In-situ scanning tunneling microscopy (STM) coupled with cyclic voltammetry was used to examine the adsorption of carbon monoxide (CO) molecules on an ordered Au(111) electrode in 0.1 M HClO4. Molecular resolution STM revealed the formation of several commensurate CO adlattices, but the (9 x radical 3) structure eventually prevailed with time. The CO adlayer was completely electrooxidized to CO2 at 0.9 V versus RHE in CO-free 0.1 M HClO(4), as indicated by a broad and irreversible anodic peak which appeared at this potential in a positive potential sweep from 0.05 to 1.6 V. A maximal coverage of 0.3 was estimated for CO admolecules from the amount of charge involved in this feature. Real-time in-situ STM imaging allowed direct visualization of the adsorption process of CO on Au(111) at 0.1 V, showing the lifting of (radical 3 x 22) reconstruction of Au(111) and the formation of ordered CO adlattices. The (9 x radical 3) structure observed in CO-saturated perchloric acid has a coverage of 0.28, which is approximately equal to that determined from coulometry. Switching the potential from 0.1 to -0.1 V restored the reconstructed Au(111) with no change in the (9 x radical 3)-CO adlattice. However, the reconstructed Au(111) featured a pairwise corrugation pattern with two nearest pairs separated by 74 +/- 1 A, corresponding to a 14% increase from the ideal value of 65.6 A known for the ( radical 3 x 22) reconstruction. Molecular resolution STM further revealed that protrusions resulting from CO admolecules in the (9 x radical 3) structure exhibited distinctly different corrugation heights, suggesting that the CO molecules resided at different sites on Au(111). This ordered structure predominated in the potential range between 0.1 and 0.7 V; however, it was converted into new structures of (7 x radical 7) and ( radical 43 x 2 radical 13) on the unreconstructed Au(111) when the potential was held at 0.8 V for ca. 60 min. The coverage of CO adlayer decreased accordingly from 0.28 to 0.13 before it was completely removed from the Au(111) surface at more positive potentials.  相似文献   

14.
We have investigated the tripod-shaped bromo adamantane trithiol (BATT) molecule on Au(111) using scanning tunneling microscopy (STM) at 4.7 K. Adsorption of BATT leads to formation of highly ordered self-assembled monolayers (SAMs) with three-point contacts on Au(111). The structure of these SAMs has been found to have a two-tiered hierarchical chiral organization. The self-assembly of achiral monomers produces chiral trimers, which then act as the building blocks for chiral hexagonal supermolecules. SAMs begin to form from the racemic mixture of assembled molecules in ribbon-shaped islands, followed by the transformation to enantiomeric domains when SAM layers develop two-dimensionally across hcp domains. Such a chiral phase transition at the two-dimensional domain can arise from a subtle balance between molecule-substrate and intermolecular interactions. Two structural factors, the S atom (stabilization) and the methylene groups (chirality) located just above the S atom, induce the chiral ordering of BATT on Au(111).  相似文献   

15.
Self-organized systems have attracted much at-tention due to their potential applications in nano- technology as a bottom-up?approach for the con-struction of molecule-scale devices and nanostruc-tures[1—4]. Beyond the self-assembly of small molecu-lar building blocks, Schnherr et al. recently suc-ceeded in arranging the rosette supramolecular nanos-tructures in two dimensions on HOPG[5,6]. Moreover, interest has tremendously increased in the su-pramolecular structures via coordination-dr…  相似文献   

16.
冠醚化单和双Schiff碱的合成及其钴(II)配合物的氧加合性能   总被引:13,自引:0,他引:13  
由苯并-15-冠-5经硝化、还原和缩合反应,制备了4'-(2-羟基苯亚甲基亚氨基)苯并-15-冠-5(L^1H)和4',5'-双(2-羟基苯亚甲基亚氨基)苯并-15-冠-5(L^4H~2)以及它们的取代衍生物L^2H和L^5H~2。在不同温度和不同轴配体存在下,测定了它们的钴(II)配合物的氧合常数和ΔHⅲ,ΔSⅲ,并与未冠醚化的类似物CoL~2^3和CoL^6比较,讨论了配体结构和轴配体碱性对配合物的氧分子加合性能的影响。  相似文献   

17.
Alizadeh N  Shamsipur M 《Talanta》1993,40(4):503-506
The complexation reactions between Co(II), Ni(II), Cu(II), Zn(II), Cd(II) and Pb(II) ions and benzo-15-crown-5, dicyclohexyl-18-crown-6, dibenzo-18-crown-6 and 1,10-diaza-18-crown-6 have been studied in dimethylsulphoxide solution at 25 degrees by means of a competitive spectrophotometric method using murexide as a metallochromic indicator. With the exception of Pb(II)(benzo-15-croqn-5)(2) the stoichiometry of the resulting complexes was found to be 1:1. The formation constants of the complexes were determined, and found to follow the Irving-Williams rule for the cations of the first transition series. It was found that the metal ion-18-crown interactions are strongly dependent on the nature of the substituents on the ring.  相似文献   

18.
The structure of molecular monolayers formed at the interface between atomically flat surfaces and a solution of free-base meso-tetradodecylporphyrins (H2Ps) was examined by scanning tunneling microscopy (STM) at the liquid/solid interface. On the surface of graphite (HOPG), H2Ps form a well-ordered monolayer characterized by an oblique unit cell. On Au(111), H2Ps form a self-organized monolayer comprised of two distinct domain types. In both types of domains, the density of the porphyrin cores is increased in comparison to the arrangement observed on HOPG. Also, high-resolution STM images reveal that, in contrast to what is observed on HOPG, physisorption on Au(111) induces a distortion of the porphyrin macrocycle out of planarity. By using X-ray photoelectron spectroscopy, we demonstrate that this is likely to be due to the coordination of the lone pairs of the iminic (-C=N-) nitrogen atoms of the porphyrin macrocycle to Au(111).  相似文献   

19.
Pure organic radical molecules on metal surfaces are of great significance in exploration of the electron spin behavior. However, only a few of them are investigated in surface studies due to their poor thermal stability. The adsorption and conformational switching of two verdazyl radical molecules, namely, 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-2-yl)-6-oxoverdazyl (B2P) and 1, 5-biisopropyl-3-(benzo[b]benzo[4,5]thieno[2, 3-d]thiophen-4-yl)-6-oxoverdazyl (B4P), are studied by scanning tunneling microscopy (STM) and density functional theory (DFT). The adsorbed B2P molecules on Au(111) form dimers, trimers and tetramers without any ordered assembly structure in which two distinct appearances of B2P in STM images are observed and assigned to be its "P" and "T" conformations. The "P" conformation molecules appear in the STM image with a large elliptical protrusion and two small ones of equal size, while the "T" ones appear with a large protrusion and two small ones of different size. Likewise, the B4P molecules on Au(111) form dimers at low coverage, strip structure at medium coverage and assembled structure at high coverage which also consists of above-mentioned two conformations. Both B2P molecules and B4P molecules are held together by weak intermolecular interaction rather than chemical bond. STM tip induced conformational switching of both verdayzl radicals is observed at the bias voltage of +2.0 V. The "T" conformation of B2P can be switched to the "P" while the "P" conformation of B4P can be switched to the "T" one. For both molecules, such a conformational switching is irreversible. The DFT calculations with Perdew-Burke-Ernzerhof version exchange-correlation functional are used to optimize the model structure and simulate the STM images. STM images of several possible molecular conformations with different isopropyl orientation and different tilt angle between verdazyl radical and Au(111) surface are simulated. For conformations with different isopropyl orientation, the STM simulated images are similar, while different tilt angles of verdazyl radical lead to significantly different STM simulated images. Combined STM experiments and DFT simulations reveal that the conformational switching originates from the change of tilting angle between the verdazyl radical and Au(111) surface. The tilt angles in "P" and "T" conformations are 0° and 50°, respectively. In this study, two different adsorption conformations of verdazyl radicals on the Au(111) surface are presented and their exact adsorption structures are identified. This study provides a possible way to study the relationship between the electron spin and configuration conversion of pure organic radical molecules and a reference for designing more conformational switchable radical molecules that can be employed as interesting molecular switches.  相似文献   

20.
Scanning tunneling microscopy (STM) and low-energy electron diffraction were used to reveal the structures of ordered adlayers of [2+2]-type C60-C60 fullerene dimer (C120) and C60-C70 cross-dimer (C130) formed on Au(111) by immersingit in abenzene solution containing C120 or C130 molecules. High-resolution STM images clearly showed the packing arrangements and the electronic structures of C120 and C130 on the Au(111) surface in ultrahigh vacuum. The (2 square root3 x 4square root3)R30 degrees, (2square root3 x 5square root3)R30 degrees, and (7 x 7) structures were found for the C120 adlayer on the Au(111) surface, whereas C130 molecules were closely packed on the surface. Each C60 or C70 monomer cage was discerned in the STM image of a C130 molecule.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号