首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The unsteady natural convective couple stress fluid flow over a semi-infinite vertical cylinder is analyzed for the homogeneous first-order chemical reaction effect. The couple stress fluid flow model ...  相似文献   

2.
3.
The magnetohydrodynamics flow of an electrically conducting, incompressible Burgers’ fluid in an orthogonal rheometer is investigated. An exact solution is obtained. The effects of various dimensionless parameters existing in the model on the velocity field, vorticity and traction are studied graphically. It is noted that boundary layers form for a variety of reasons. It form as the Reynolds number increases. Also, as the Weissenberg number increases a distinct boundary layer formation is observed. It can develop at low Reynolds number provided the Weissenberg number is sufficiently high, however, it is not possible in the case of a Newtonian fluid. It is shown that no torque is exerted by the fluid on one of the disks. Results are compared with Oldroyd-B fluid.  相似文献   

4.
5.
We derive an exact solution of a problem which models the stationary flow of an incompressible viscoelastic fluid in an orthogonal rheometer subject to Navier slip boundary conditions, and investigate the effect of the slip coefficient and the material parameters on the solution. The fluid model is a frame-invariant three-dimensional generalization by J. Murali Krishnan and K.R. Rajagopal of a one-dimensional model due to J.M. Burgers.  相似文献   

6.
The article examines the possibilities of numerical solution of chimney load from the effect of wind. The shear-stress transport (SST) k-ω turbulence model in ANSYS Fluent software is used to evaluate the task of the flow around the circumference of the rough cylinder. Calculations are performed on two different meshes that lead to the solution using wall function and near wall modeling. These two solution approaches in terms of defining wall roughness are presented in the paper by evaluating of the time dependence of the mean pressure coefficient distribution at the circumference, drag coefficient, and lift coefficient. The accuracy of the calculations is verified with parameters determined according to valid standards.  相似文献   

7.
Given a Hilbert space H, the infinite-dimensional Lorentz/second-order cone K is introduced. For any xH, a spectral decomposition is introduced, and for any function f:RR, we define a corresponding vector-valued function fH(x) on Hilbert space H by applying f to the spectral values of the spectral decomposition of xH with respect to K. We show that this vector-valued function inherits from f the properties of continuity, Lipschitz continuity, differentiability, smoothness, as well as s-semismoothness. These results can be helpful for designing and analyzing solution methods for solving infinite-dimensional second-order cone programs and complementarity problems.  相似文献   

8.
This study deals with the temperature-dependent viscosity effects on the natural convection boundary layer on a horizontal elliptical cylinder with constant surface heat flux. The mathematical problem is reduced to a pair of coupled partial differential equations for the temperature and the stream function, and the resulting nonlinear equations are solved numerically by cubic spline collocation method. Results for the heat transfer characteristics are presented as functions of eccentric angle for various values of viscosity variation parameters, Prandtl numbers and aspect ratios. Results show that an increase in the viscosity variation parameter tends to accelerate the fluid flow near the surface and increase the maximum velocity, thus decreasing the velocity boundary layer thickness. As the viscosity variation parameter is increased, the surface temperature tends to decrease, thus increasing the local Nusselt number. Moreover, the local Nusselt number of the elliptical cylinder increases as the Prandtl number of the fluid is increased.  相似文献   

9.
The velocity field of generalized second order fluid with fractional anomalous diiusion caused by a plate moving impulsively in its own plane is investigated and the anomalous diffusion problems of the stress field and vortex sheet caused by this process are studied. Many previous and classical results can be considered as particular cases of this paper, such as the solutions of the fractional diffusion equations obtained by Wyss; the classical Rayleigh’s time-space similarity solution; the relationship between stress field and velocity field obtained by Bagley and co-worker and Podlubny’s results on the fractional motion equation of a plate. In addition, a lot of significant results also are obtained. For example, the necessary condition for causing the vortex sheet is that the time fractional diffusion index β must be greater than that of generalized second order fluid α; the establiihment of the vorticity distribution function depends on the time history of the velocity profile at a given point, and the time history can be described by the fractional calculus.  相似文献   

10.
The stagnation slip flow on an axially moving cylinder is studied.The Navier–Stokes and energy equations reduce to nonlinearordinary differential equations under a similarity transform.For large slip, the flow field decays exponentially into potentialflow. The heat transfer can be expressed as an incomplete gammafunction. In general, the heat transfer increases with slip,Prandtl number and Reynolds number.  相似文献   

11.
Modified Darcy’s law for fractional generalized Burgers’ fluid in a porous medium is introduced. The flow near a wall suddenly set in motion for a fractional generalized Burgers’ fluid in a porous half-space is investigated. The velocity of the flow is described by fractional partial differential equations. By using the Fourier sine transform and the fractional Laplace transform, an exact solution of the velocity distribution is obtained. Some previous and classical results can be recovered from our results, such as the velocity solutions of the Stokes’ first problem for viscous Newtonian, second grade, Maxwell, Oldroyd-B or Burgers’ fluids.  相似文献   

12.
Matheus J. Lazo 《Optimization》2014,63(8):1157-1165
Fractional operators play an important role in modelling nonlocal phenomena and problems involving coarse-grained and fractal spaces. The fractional calculus of variations with functionals depending on derivatives and/or integrals of noninteger order is a rather recent subject that is currently in fast development due to its applications in physics and other sciences. In the last decade, several approaches to fractional variational calculus were proposed by using different notions of fractional derivatives and integrals. Although the literature of the fractional calculus of variations is already vast, much remains to be done in obtaining necessary and sufficient conditions for the optimization of fractional variational functionals, existence and regularity of solutions. Regarding necessary optimality conditions, all works available in the literature concern the derivation of first-order fractional conditions of Euler–Lagrange type. In this work, we obtain a Legendre second-order necessary optimality condition for weak extremizers of a variational functional that depends on fractional derivatives.  相似文献   

13.
The present paper focuses on the analysis of two- and three-dimensional flow past a circular cylinder in different laminar flow regimes. In this simulation, an implicit pressure-based finite volume method is used for time-accurate computation of incompressible flow using second order accurate convective flux discretisation schemes. The computation results are validated against measurement data for mean surface pressure, skin friction coefficients, the size and strength of the recirculating wake for the steady flow regime and also for the Strouhal frequency of vortex shedding and the mean and RMS amplitude of the fluctuating aerodynamic coefficients for the unsteady periodic flow regime. The complex three dimensional flow structure of the cylinder wake is also reasonably captured by the present prediction procedure.  相似文献   

14.
The flow induced by a body moving in an inviscid incompressible density stratified fluid in an infinite circular cylinder under the influence of a uniform axial magnetic field is studied using the method of replacing the body by an isolated point force. This method was adopted by Childress and others in discussing the body effects in a viscous fluid. The solution is obtained using the Fourier transformation and the Lighthill’s radiation condition. The cases of weak and strong magnetic fields are discussed.  相似文献   

15.
The present paper investigates phenomena brought about into the classic peristaltic mechanism by inclusion of non-Newtonian effects through a porous space in a channel. The peristaltic motion of a second-order fluid through a porous medium was studied for the case of a planar channel with harmonically undulating extensible walls. The system of the governing nonlinear PDE is solved by using the perturbation method to second-order in dimensionless wavenumber. The analytic solution has been obtained in the form of a stream function from which the axial pressure gradient has been derived. The flow is investigated in a wave frame of reference moving with velocity of the wave. Numerical calculations are carried out for the pressure rise and frictional force. The features of the flow characteristics are analyzed by plotting graphs and discussed in detail.  相似文献   

16.
The Bingham fluid model was developed to represent viscoplastic materials that change from rigid bodies at low stress to viscous fluids at high stress – a process termed yielding. Such a fluid model is used in the modeling of slurries, which occur frequently in food processing and other engineering applications.  相似文献   

17.
The numerical solution of the free‐surface fluid flow on a rotating elliptical cylinder is presented. Up to the present, research has concentrated on the circular cylinder for which steady solutions are the main interest. However, for noncircular cylinders, such as the ellipse, steady solutions are no longer possible, but there will be periodic solutions in which the solution is repeated after one full revolution of the cylinder. It is this new aspect that makes the investigation of noncircular cylinders novel. Here we consider both the time‐dependent and periodic solutions for zero Reynolds number fluid flow. The numerical solution is expedited by first mapping the fluid film domain onto a rectangle such that the position of the free‐surface is determined as part of the solution. For the time‐dependent case a simple time‐marching method of lines approach is adopted. For the periodic solution the discretised nonlinear equations have to be solved simultaneously over a time period. The resulting large system of equations is solved using Newton's method in which the form of the Jacobian enables a straightforward decomposition to be implemented, which makes matrix inversion manageable. In the periodic case all derivatives have been approximated pseudospectrally with the time derivative approximated by a differentiation matrix which has been specially derived so that the weight of fluid is algebraically conserved. Of interest is the solution for which the weight of fluid is at its maximum possible value, and this has been obtained by increasing the weight until a consistency break‐down occurs. Time‐dependent solutions do not produce the periodic solution after a long time‐scale but have protuberances which are constantly appearing and disappearing. Periodic solutions exhibit spectral accuracy solutions and maximum supportable weight solutions have been obtained for ranges of eccentricity and angular velocity. The maximum weights are less than and approximately proportional to those obtained for the circular case. The shapes of maximum weight solutions is distinctly different from sub‐maximum weight solutions. © 2007 Wiley Periodicals, Inc. Numer Methods Partial Differential Eq, 2008  相似文献   

18.
19.
This paper is concerned with the exact analytic solutions for the velocity field and the associated tangential stress corresponding to a potential vortex for a fractional Maxwell fluid. The fractional calculus approach is taken into account in the constitutive relationship of a non-Newtonian fluid model. Exact analytic solutions are obtained by using the Hankel transform and the discrete Laplace transform of sequential fractional derivatives. The solutions for a Maxwell fluid appear as the limiting cases of our general solutions by setting α=1α=1. The influence of fractional coefficient on the decay of vortex velocity is also analyzed by graphical illustrations.  相似文献   

20.
As a counterpart of the classical Yamabe problem, a fractional Yamabe flow has been introduced by Jin and Xiong (2014) on the sphere. Here we pursue its study in the context of general compact smooth manifolds with positive fractional curvature. First, we prove that the flow is locally well posed in the weak sense on any compact manifold. If the manifold is locally conformally flat with positive Yamabe invariant, we also prove that the flow is smooth and converges to a constant fractional curvature metric. We provide different proofs using extension properties introduced by Chang and González (2011) for the conformally covariant fractional order operators.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号