首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.

Acrylamide (AAm)/Acrylic Acid (AAc) copolymers have been prepared by gamma irradiation of binary mixtures at three different compositions where the acrylamide/acrylic acid mole ratios varied around 15, 20, and 30%. Threshold dose for 100% conversion of monomers into hydrogels was found to be 8.0 kGy. Poly(Acrylamide‐co‐Acrylic Acid) (poly(AAm‐co‐AAc)) hydrogels have been considered for the removal of uranyl ions from aqueous solutions. Swelling behavior of these hydrogels was determined in distilled water at different pH values and in aqueous solutions of uranyl ions. The results of swelling tests at pH 8.0 indicated that poly(AAm‐co‐AAc) hydrogel, containing 15% acrylamide showed maximum % swelling. Diffusion of water and aqueous solutions of uranyl ion into hydrogels was found to be non‐Fickian in character and their diffusion coefficients were calculated. The effect of pH, composition of hydrogel, and concentration of uranyl ions on the adsorption process were studied at room temperature. It was found that one gram of dry poly(AAm‐co‐AAc) hydrogel adsorbed 70–320 mg and 70–400 mg uranyl ions from aqueous solutions of uranyl nitrate and uranyl acetate in the initial concentration range of 50–1500 mg UO2 2+L?, depending on the amount of AAc in the hydrogels, respectively. Adsorption isotherms were constructed for poly(AAm‐co‐AAc)–uranyl ion system indicating an S type of adsorption in the Giles classification system. It is concluded that crosslinked poly(AAm‐co‐AAc) hydrogels can be successfully used for the removal of uranyl ions from their aqueous solutions.  相似文献   

2.
In this work, we report a series of poly(itaconic acid‐co‐acrylic acid‐co‐acrylamide) (poly(IA‐co‐AAc‐co‐AAm)) hydrogels via frontal polymerization (FP). FP starts on the top of the reaction mixture with aid of heating provided from soldering iron gun. Once polymerization initiated, no further energy is required to complete the process. The influences of IA/AAc weight ratios on frontal velocities, temperatures, and conversions on the reaction time are thoroughly investigated and discussed where the amount of AAm monomer remains constant. Fourier transform‐infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM), dynamic mechanical analysis, and the swelling measurement are applied to characterize the as‐synthesized poly(IA‐co‐AAc‐co‐AAm) hydrogels. Interestingly, the swelling ratios of the hydrogels are changed with different IA/AAc contents, and the maximum swelling ratios are ~4439% in water. SEM images describe highly porous morphologies and explain good swelling capabilities. Moreover, the poly(IA‐co‐AAc‐co‐AAm) hydrogels exhibit superior pH‐responsive ability. © 2019 Wiley Periodicals, Inc. J. Polym. Sci., Part A: Polym. Chem. 2019 , 57, 2214–2221  相似文献   

3.
Based on a biodegradable cross-linker, acryloyloxyethylaminopolysuccinimide (AEA-PSI), a series of looser cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their water content, swelling/deswelling kinetics, and the morphology of the gels were investigated. The swelling behaviors of AEA-PSI-cross-linked P(NIPAAm/AAc) hydrogels were investigated in Dulbecco’s phosphate-buffered saline (pH = 7.4), in the distilled water, and in the simulated gastric fluids (pH = 1.2), respectively. The water contents of the hydrogels were controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the temperature. In the swelling kinetics, all the dried hydrogels exhibited fast swelling behavior, and the swelling ratios were influenced significantly by the amounts of AEA-PSI and AAc content. The deswelling kinetics of the hydrogel were independent of the content of AAc and cross-linker. Lastly, the morphology of the hydrogels was estimated by the field scan electron microscopy.  相似文献   

4.
Novel hydrogels based on poly(N-isopropylacrylamide-co-N-vinyl-2-pyrrolidone) (PNIPAAm/PNVP), were synthesized by solution radical polymerization using water as solvent and different weight percentage of crosslinkers ranging from 0.5 to 4%. The monomer mol ratios of NIPAAm/VP (0.9/0.1, 0.5/0.5, and 0.1/0.9) were used in all cases. N,N′-methylenebisacrylamide (MBA) and the new synthesized N,N,N-triacrylamido melamine (MAAm) were used as crosslinkers. The swelling parameters such as the swelling ratio Q, equilibrium water content (EWC), volume fraction of polymer φp and volume fraction at crosslinking φr were calculated from swelling measurements at different temperatures. The lower critical solution temperatures (LCST) of the prepared hydrogels were measured using DSC technique. The data of LCST indicated that the NIPAAm/VP crosslinked with MAAm or MBA showed reversible swelling and shrinking with temperature changes. The temperature dependence of swelling ratio and response kinetics upon heating or cooling was also investigated to understand the smart properties, i.e., temperature sensitive properties of these smart hydrogels. The in vitro release experiments were carried out at 22 and 37°C, respectively, to investigate the effect of temperature-sensitive property of these PNIPAAm/PNVP hydrogels crosslinked with MAAm and MBA crosslinkers on insulin release profiles.  相似文献   

5.
The copolymer gels showing gradual phase transition induced by temperature were synthesized by redox random copolymerization of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) monomer under a constant electric current. The behavior of gradual phase transition induced by temperature was examined by measuring the thermal properties, pKa values and swelling ratio. The experimental results indicate that temperature-induced gradual phase transitions of poly(NIPAAm-co-AAc) gel are mainly driven by transport before polymerization and protonation/ionization of the AAc, caused by the electric current.  相似文献   

6.
Heterogeneous hydrogels were prepared by -ray irradiation of aqueous solutions of N-isopropylacrylamide (NIPAAm) and acrylic acid (AAc) having various compositions above the lower critical solution temperature. The structures of the poly(N-isopropylacrylamide) (PNIPAAm) gel and poly(NIPAAm-co-AAc) gels in both their highly hydrated and their natural states were observed by environmental scanning electron microscopy. The heterogeneous structures of the homopolymer gel and the copolymer gels whose AAc contents were between 10–50% consisted of interconnected microspheres. In the copolymer gel with a high AAc content, the structure became a largely interconnected one which lacked micro-droplets. The hydrophobic interaction caused by hydrogen bonding between the unionized carboxylic acid groups of AAc and the amide groups of NIPAAm, the rates of polymerization, and the aggregation rates play important roles in the formation of interconnected microsphere gel structures.  相似文献   

7.

The swelling behavior of acrylamide (AAm)–based polyampholyte hydrogels in water and in aqueous salt (NaCl) solutions was investigated. [(Methacrylamido)propyl]trimethyl‐ammonium chloride (MAPTAC) and acrylic acid (AAc) were used as the ionic comonomer in the hydrogel preparation. Three sets of hydrogels containing 70 mol% AAm and 30 mol% ionic comonomers of varying mole ratios were prepared. The variations of the hydrogel volume in response to changes in pH, and salt concentration were measured. As pH increases from 1, the hydrogel volume V eq in water first increases and reaches a maximum value at a certain pH. Then, it decreases again with a further increase in pH and attains a minimum value around the isoelectric point (IEP). After passing the collapsed plateau region, the gel reswells again up to pH=7.1. The reswelling of the collapsed gels containing 10 and 4% MAPTAC occurs as a first‐order phase transition at pH=5.85 and 4.35, respectively, while the hydrogel with 1% MAPTAC reswells continuously beyond its IEP. Depending on pH of the solution, the hydrogels immersed in salt solutions exhibit typical polyelectrolyte or antipolyelectrolye behavior. The experimental swelling data were compared with the predictions of the Flory‐Rehner theory of swelling equilibrium including the ideal Donnan equilibria. It was shown that the equilibrium swelling theory qualitatively predicts the experimental behavior of polyampholyte hydrogels.  相似文献   

8.
The diffusion behavior of poly(ethylene glycol) (PEG) in N-isopropylacrylamide (NIPAAm) hydrogels was investigated using confocal Raman spectroscopy with regard to temperature (25°C, 30°C and 35°C), PEG concentration (10 and 40?wt.%), PEG molecular weight (2,000 and 12,000?g/mol) and addition of the compatible solute ectoine (0.1 and 2?wt.%). Swelling and shrinking of the gels was observed by means of confocal Raman spectroscopy. The swelling behavior of NIPAAm gels in aqueous solutions of PEG and ectoine was found to resemble the swelling behavior in pure water with regard to temperature, i.e., the gel shrinks with increasing temperature. However, the presence and concentration of PEG and ectoine influence the swelling behavior by lowering the volume phase-transition temperature of the gel and facilitating shrinking. In some cases, a re-swelling of the gel was observed after the initial shrinking at the onset of PEG diffusion, which can be explained by PEG changing the chemical potential in the gel phase as it diffuses into the sample allowing the water to re-enter. The expulsion of water from the gel during shrinking and the so-caused increase of PNIPAAm and PEG concentrations in some cases led to the PEG diffusion seemingly being faster in more shrunken gels despite of their higher diffusion resistance.  相似文献   

9.
Copolymer network hydrogels were prepared by gamma irradiation of aqueous solutions of poly(vinyl pyrrolidone) (PVP) and acrylic acid monomer (AAc). The composition of the final hydrogels compared to the composition of the initial preparation solutions of hydrogels was determined. The chemical structure and nature of bonding was characterized by IR spectroscopy analysis, while the thermal durability of the prepared hydrogels was assessed by thermogravimetric analysis (TGA). The kinetic swelling in water and the pH-sensitivity of PVP/AAc copolymer hydrogels was studied. The drug release properties of PVP/AAc hydrogels taking methyl orange indicator as a drug model was investigated. The IR spectra indicate the formation of copolymer networks, whereas the TGA study showed that the PVP/AAc hydrogels possess higher thermal stability than pure PAAc and lower than PVP hydrogels. The kinetic swelling in water showed that all the hydrogels reached equilibrium after 24 h and that the degree of swelling increases with increasing the ratio of AAc in the initial feeding solutions. It was found that the degree of swelling of PVP/AAc hydrogels increases greatly within the pH range 4-7 depending on composition.  相似文献   

10.
The thermoresponsive behavior and mechanical properties of nanostructured hydrogels, which consist of poly(acrylamide) nanoparticles embedded in a cross-linked poly(N-isopropylacrylamide) hydrogel matrix, are reported here. Nanostructured hydrogels exhibit a tuned volume phase transition temperature (T VPT), which varies with nanoparticle content in the range from 32 up to 39–40 °C. Moreover, larger equilibrium water uptake, faster swelling and de-swelling rates, and larger equilibrium swelling at 25 °C were obtained with nanostructured hydrogels compared with those of conventional ones. Elastic and Young’s moduli were larger than those of conventional hydrogels at similar swelling ratios. The tuned T VPT and the de-swelling rate were predicted with a modified Flory–Rehner equation coupled with a mixing rule that considers the contribution of both polymers. These behaviors are explained by a combination of hydrophilic/hydrophobic interactions and by the controlled inhomogeneities (nanoparticles) introduced by the method of synthesis.  相似文献   

11.
Novel pH- and temperature-sensitive polymer matrices based on N-isopropylacrylamide have been developed. The hydrogels were prepared by bulk radical polymerization of N-isopropylacrylamide and 1-vinyl-2-pyrrolidinone in appropriate amounts of distilled water using different mol% of traditional N,N-methylene bisacrylamide (MBA) and the new synthesized N,N,N-tris acryloyl melamine (MAAm) crosslinkers. Lower critical solution transition temperatures (LCST) were measured by differential scanning calorimetry. The synthesized hydrogels have LCST lower than 40°C. The influence of environmental conditions such as temperature and pH on the swelling behavior of these polymeric gels was investigated. The swelling behaviors of the resulting gels show pH sensitivity. The crosslinked NIPAAm/VP with MAAm hydrogels exhibited more rapid deswelling rate than NIPAAm/VP hydrogels crosslinked with MBA in pure water in response to abrupt temperature changes from 20°C to 50°C.  相似文献   

12.
A series of N-isopropylacrylamide (NIPAAm) copolymer gels with different hydrophilicities were prepared from NIPAAm, hydrophilic acrylamide (AAm) and hydrophobic butyl methacrylate (BMA). The swelling and thermo-responsive properties of PNIPAAm P (NIPAm-co-BMA) and P(NIPAm-co-AAm) copolymer hydrogels were investigated. The drug loading and releasing behaviors for two kinds of model drug with different hydrophilicities were studied. The result shows that the copolymer gels present negative thermo-sensitivities. The lower critical solution temperature (LCST), equilibrium swelling degree and the initial swelling rate increase as the hydrophilicity of gels increases when the temperature is below the LCST. With increasing gel hydrophilicity the loading ratio for sodium salicylate increases, while for salicylic acid, the reverse is observed. The initial drug releasing rate of sodium salicylate and salicylic acid also increase with increasing gel hydrophilicity. The initial drug releasing rate of sodium salicylate is significantly higher than that of salicylic acid. For salicylic acid which is less hydrophilic, the equilibrium releasing ratio at high temperature is lower than that at low temperature while for sodium salicylate which is more hydrophilic, the equilibrium releasing ratio at high temperature is almost the same as that at low temperature. Equilibrium releasing ratios of the three gels are significantly different from each other for salicylic acid when the temperature is below LCST while the equilibrium releasing ratios of the three gels are all 100% for sodium salicylate. __________ Translated from Journal of Central South University (Science and Technology), 2007, 38(5): 906–911 [译自: 中南大学学报(自然科学版)]  相似文献   

13.
Biodegradable cross-linkers acryloyloxyethylaminopolysuccinimide (AEA-PSI) were obtained by microwave irradiation using maleic anhydride as materials. With AEA-PSI cross-linker, cross-linked poly(N-isopropylacrylamide-co-acrylic acid) [P(NIPAAm-co-AAc)] hydrogels were prepared, and their phase transition behavior, lower critical solution temperature (LCST), water content, thermodynamics stability, and enzymatic degradation properties were investigated. By alternating the NIPAAm/AAc molar ratio, hydrogels were synthesized to have LCST in the vicinity of 37 °C. The LCST of AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was significantly influenced by monomer ratio of the NIPAAm/AAc but not by the cross-linking density within the polymer network. The water content of AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was more than 90% even at 37 °C, which was controlled by the monomer molar ratio of NIPAAm/AAc, swelling media, and the cross-linking density. The thermodynamics stability was also characterized by thermogravimetry. In enzymatic degradation studies, breakdown of the AEA-PSI-cross-linked P(NIPAAm-co-AAc) hydrogels was dependent on the cross-linking density. Submitted to Colloid and Polymer Science, 2007-1-28.  相似文献   

14.
This study reports the preparation of poly(sodium-4-styrene sulfonate) (PSS) treated bentonite and clinoptilolite to prevent the agglomeration and sedimentation of these inorganic fillers during the preparation of hydrogel. For this purpose PSS treated fillers were prepared by using various techniques (dip and dry, hydrothermal, one-step ball milling and ultrasonication methods). The most suitable technique for preparing these PSS treated inorganic fillers (abbreviated as BP-dip and CP-dip) was the dip and dry method. BP-dip and CP-dip based polyvinyl alcohol/polyvinylpyrrolidone (PVA/PVP) composite hydrogels were prepared using the freeze/thawing method after the addition of one of BP-dip and CP-dip inorganic fillers in various amounts. The swelling properties, stability behaviors and Rhodamine B (RhB) adsorption of the composite hydrogels were studied. It was found that the swelling degrees of CP-dip and BP-dip based composite hydrogels with 25 mg of filler were higher than that of all other samples. The kinetic mechanism of RhB adsorption process and the related characteristic kinetic parameters were investigated by Pseudo kinetic models. The adsorption kinetics results for RhB adsorption were found best fitted with pseudo-second-order kinetics model. The maximum RhB adsorption capacity was determined to be for PVA/PVP-CP-dip25, which was 3.3 times higher than that of the unfilled PVA/PVP hydrogel.  相似文献   

15.
Poly(vinylidene fluoride)/Pb(Zr0.53Ti0.47)O3,([PVDF]1?x/[PZT]x) composites of volume fractions x and (0–3) type connectivity were prepared in the form of thin films. PZT powders with average grain sizes of 0.2, 0.84, and 2.35 μm in different volume fraction of PZT up to 40 % were mixed with the polymeric matrix. The influence of the inorganic particle size and its content on the thermal degradation properties of the composites was then investigated by means of thermo-gravimetric analysis. It is observed that filler size affects more than filler concentration the degradation temperature and activation energy of the polymer. In the same way and due to their larger specific area, smaller particles leave larger solid residuals after the polymer degradation. The polymer degradation mechanism is not significantly modified by the presence of the inorganic fillers. On the other hand, an inhibition effect occurs due to the presence of the fillers, affecting particularly the activation energy of the process.  相似文献   

16.
This study is to investigate the effect of nitrile butadiene rubber (NBR as impact modifier) together with Al2O3/YSZ (toughening) as filler loading in PMMA denture base on the thermal and mechanical properties. PMMA matrix without fillers was mixed between PMMA powder and 0.5 mass% of BPO, and it is used as the control group. The liquid components consist of 90% of methyl methacrylate (MMA) and 10% as the cross-linking agent of ethylene glycol dimethacrylate. The denture base composites were fabricated by incorporating PMMA powder and BPO and fixed at 7.5 mass% NBR particles and filler loading (1, 3, 5, 7 and 10 mass%) of Al2O3/YSZ mixture filler by (1:1 ratio) as the powder components. The ceramic fillers were treated with silane (γ-MPS) and the powder/liquid ratio (P/L) according to dental laboratory practice. The TGA data obtained show that the PMMA composites have better thermal stability compared to unreinforced PMMA, while DSC curves show slightly similar Tg values. DSC results also indicated the presence of unreacted monomer content for both reinforced and unreinforced PMMA composites. The fracture toughness, Vickers hardness and flexural modulus values were statistically increased compared to the unreinforced PMMA matrix (P?<?0.05).  相似文献   

17.
Temperature-sensitive ionic hydrogels based on N-t-butylacrylamide (TBA), acrylamide (AAm), 2-acrylamido-2-methylpropane sulfonic acid sodium salt (AMPS) and N,N-methylenebis(acrylamide) (BAAm) monomers were prepared. The molar ratio of TBA to the monomers AAm and AMPS was fixed at 60/40, while the AMPS content of the hydrogels was varied. The elastic modulus of the hydrogels was in the range of 347-447 Pa, much lower than the modulus of PAAm or poly(N-isopropylacrylamide) hydrogels due to the reduced crosslinking efficiency of BAAm in TBA/AAm copolymerization. The hydrogels exhibited swelling-deswelling transition in water depending on the temperature. Increasing ionic group (AMPS) content resulted in shifting of the transition temperature interval in which the deswelling takes place. The higher the ionic group content, the broader the temperature interval at the phase transition. Ionic hydrogels exhibited first-order reentrant conformational transitions in ethanol-water and in dimethylsulfoxide (DMSO)-water mixtures. The higher the ionic group content of the hydrogels the narrower the ethanol (or DMSO) range in which the reentrant phenomena occur. By taking into account the difference of the solvent mixture composition inside and outside the gel, the equilibrium swelling theory provided a satisfactory agreement to the experimental swelling data of the hydrogels immersed in the solvent mixtures.  相似文献   

18.
A series of thermoreversible copolymeric hydrogels with various molar ratios of N-isopropylacrylamide (NIPAAm) and hydrophobic monomers such as 2,2,3,3,4,4,5,5-octafluoropentyl methacrylate (OFPMA) and n-butyl methacrylate (BMA) were prepared by emulsion polymerization. The effect of hydrophobic monomer on the swelling behavior and mechanical properties of the present copolymeric hydrogels was investigated. Results showed that the equilibrium swelling ratio and critical gel transition temperature (CGTT) decreased with an increase of the content of hydrophobic monomer, but the gel strength of the gel increased with an increase of the content of hydrophobic monomer. Due to stronger hydrophobicity of OFPMA, the NIPAAm/OFPMA copolymeric hydrogels had lower swelling ratios and higher gel strengths than NIPAAm/BMA copolymeric gels.  相似文献   

19.
A novel thermosensitive poly(N-vinylisobutyramide)(polyNVIBA) hydrogel was prepared by the copolymerization of N-vinylisobutyramide (NVIBA) with butylene-bis-NVA(B-BNVA) as a crosslinker in a high yield. The swelling transition behavior was examined in comparison with poly(N-isopropylacrylamide)(polyNIPAAm) hydrogel. The resulting polyNVIBA hydrogel clearly showed a swelling transion in water at ca. 41°C. To control the transition temperature (Tt) of the gel, crosslinked copolymers of NVIBA and N-vinylacetamide (NVA) were prepared and compared with copolymers of N-isopropylacrylamide(NIPAAm) and NVA. The incorporation of NVA led to a higher swelling transition temperature. Tt of poly(NVIBA-co-NVA) gels was almost the same as those in water-soluble poly(NVIBA-co-NVA). The responses for a swelling transition of polyNVIBA and poly(NVIBA-co-NVA) gels were sharp in comparison to polyNIPAAm gels. PolyNVIBA and poly(NVIBA-co-NVA) gels desorbed 98% of water above Tt. The characteristic and the mechanism of the phase transition on the hydrogels were discussed. © 1997 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 35 : 3377–3384, 1997  相似文献   

20.
A study was performed to determine the effect of the content and orientation of fillers on the thermal conductivity of a polymeric composite packed with hexagonal boron nitride (hBN) and silicon carbide (SiC) fillers. The thermal conductivity behavior of SiC–Nylon 6,6 and hBN–Nylon 6,6 composites was more dependent on the orientation and shape of the filler than on its thermal conductivity. The thermal conductivity of SiC–Nylon 6,6 composites with 59 % (v/v) isotropic SiC fillers increased from 0.25 to 3.83 W/m K. That of hBN–Nylon 6,6 composites with 62 % (v/v) anisotropic hBN fillers increased from 0.25 to 2.16 W/m K in the perpendicular direction whereas in the parallel direction it increased rapidly to 8.55 W/m K .  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号