首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
可见光/近红外光谱技术快速测定橙汁柠檬酸含量   总被引:3,自引:1,他引:2  
为了快速无损测定橙汁的柠檬酸含量,提出了一种用可见光/近红外光谱技术进行检测的新方法。选用高效液相色谱法作为光谱柠檬酸测定的标定方法。采用平滑点数为5的移动平滑法对原始光谱进行预处理消除噪声。由于采集的光谱数据量非常大,为了减少建模时间,建模之前采用小波变换对经过预处理的大量光谱数据进行降维压缩,并在Matlab7.01中通过自编程序实现此变换。利用光谱专用分析软件Unscrambler 9.5,对压缩后的新变量进行分析,建立偏最小二乘(PLS)校正模型。考虑到不同小波基及分解尺度对数据压缩的影响,采用预测平方和PRESS值最小的评价标准,选择最佳的小波基Db4及分解尺度5。用于本实验的样本总数为40,其中30个样本进行建模,10个用于预测。用校正集相关系数(r)和标准偏差(SEC)作为校正模型的评价指标,预测结果采用预测相关系数(r)和预测标准偏差(SEP)来评定。文章将基于小波变换的PLS模型与直接建立的PLS模型进行了比较,偏最小二乘法结合小波变换的模型预测相关系数为r=0.901, 预测标准偏差SEP=0.937;而由PLS建立的模型其预测相关系数r=0.849,预测标准偏差SEP=1.662。由此可见,由偏最小二乘法结合小波变换所得模型效果优于单独使用偏最小二乘法的结果。  相似文献   

2.
采用支持向量机(support vector machine,SVM)建立了鱼糜样品中水分和蛋白质含量的近红外光谱校正模型,并采用独立样本集进行了预测。光谱数据经间隔两点一阶导数(DB1G2)、标准正态变换(SNV)、多元散射校正(MSC)相结合的方法预处理后,用偏最小二乘(PLS)降维处理,取前15个投影变量为自变量。获得水分模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP; 蛋白质模型的校正相关系数Rc、预测相关系数Rv、定标标准差SEE、预测标准差SEP,有较好的预测准确性。基于SVM算法的近红外光谱技术可用于鱼糜水分和蛋白质含量的快速检测。  相似文献   

3.
梨可溶性固形物含量的在线近红外光谱检测   总被引:11,自引:0,他引:11  
应用近红外透射检测技术在线检测梨的可溶性固形物(SSC)。在实验台上以0.5 m·s-1的速度,300 W的光照强度,采用半透射方式检测梨的光谱。实验采用的梨样品为187个,其中147个样品为校正集,40个样品为预测集,应用偏最小二乘回归(PLS)和主成分回归(PCR)建立梨可溶性固形物的在线预测模型。选取550~700 nm, 700~850 nm, 550~850 nm为建模波段范围,发现无论对于PLS还是PCR,都是550~850 nm波段的建模结果好。本实验还研究对比不同的光谱预处理方法(光谱平滑,一阶微分,二阶微分等)对预测模型性能的影响,其中5点S-G(Savitzky-Golay)光谱平滑能有效地提高光谱的信噪比,改善模型预测精度,而一阶微分、二阶微分对模型性能改善基本上没有影响;最好的预测模型相关系数r=0.948 8, 校正标准差RMSEC=0.236,预测标准差RMSEP=0.548。结果表明:PLS模型预测性能较好,梨可溶性固形物的在线检测具有可行性。  相似文献   

4.
棉籽油分含量近红外无损检测分析模型与应用   总被引:2,自引:0,他引:2  
棉花是一种重要的油料作物。建立快速、无损检测棉花种子含油量的方法,对于棉花油分育种工作中的材料鉴定、筛选具有重要意义。利用近红外光谱仪采集118份不同油分含量棉花种籽的近红外漫反射光谱,结合化学方法测定验证,建立了棉籽油分含量快速无损检测的近红外模型。光谱预处理方法采用一阶导数+多元散射校正(MSC),光谱范围5 446~8 848 cm-1,主成分维数为5,以基本覆盖陆地棉棉籽含油量范围的106份试验材料为校正样品集,利用偏最小二乘法(PLS)建立了棉籽仁油分含量近红外反射光谱(NIR)校正模型。校正模型决定系数R2=0.975,校正标准差SEC=0.67。用外部验证样品集进行外部验证,对所建模型的实际预测能力进行检验。结果表明,油分含量预测值与化学值相关系数r=0.978,预测结果误差范围0.1%~1.7%,建立的模型具有很好的预测性。利用建立的模型对784份育种材料进行了油分含量预测,结果显示,该模型应用可以加快棉花育种材料的油分鉴定。  相似文献   

5.
可见/近红外光谱漫透射技术检测西瓜坚实度的研究   总被引:6,自引:3,他引:3  
西瓜是一种广受世界各国消费者喜爱的水果,坚实度是西瓜的一个重要品质指标,文章利用可见/近红外漫透射光谱技术进行了西瓜坚实度(FM)的无损检测研究。采用偏最小二乘法(PLS)和主成分回归法(PCR)建立了FM与漫透射光谱的无损检测数学模型,对比分析了不同光谱预处理方法(原始光谱%T,一阶微分处理光谱D1(%T ),二阶微分处理光谱D2(%T )以及光谱的Savitsky-Golay法滤波)对模型预测性能的影响。根据模型相关系数(r)及预测平方根标准偏差(RMSEP)进行了不同模型的预测性能对比,结果表明:光谱经二阶微分处理并使用Savitsky-Golay法滤波后,采用PLS法可以得到最好的FM建模结果(r=0.974,RMSEP=0.589 N)。研究表明:应用可见/近红外漫透射光谱技术检测西瓜的坚实度是可行的,为今后快速无损评价大果形厚果皮类水果坚实度提供了理论依据。  相似文献   

6.
近红外光谱法快速检测猪肉中挥发性盐基氮的含量   总被引:15,自引:0,他引:15  
为了实现快速无损地检测猪肉新鲜度的目的,应用近红外光谱法测定猪肉新鲜度重要指标一挥发性盐基氮(TVB-N)的含量.猪肉原始光谱经标准偏差归一化方法(SNV)预处理后,用联合区间偏最小二乘法(siPLS)建立猪肉预处理后光谱和TVB-N含量的校正模型并与经典偏最小二乘法(PLS)模型、间隔偏最小二乘法(iPLS)模型作比较.试验结果表明,利用联合区间偏最小二乘法所建的预测模型最佳,其校正集相关系数(Rc)和交瓦验证均方根误差(fRv)分别为0.8332和3.75,预测集的相关系数(Rp)和预测均方根误差(fRP)分别为0.8238和4.17.研究结果表明利用近红外光谱和联合区间偏最小二乘法可以快速地测定猪肉中挥发性盐基氮的含量.  相似文献   

7.
提出利用微型近红外光谱仪、结合Y型光纤探头,在900~1 700 nm范围内对奶粉中蛋白质、脂肪含量进行快速、无损检测的漫反射光谱检测方法。基于Unscrambler 9.7化学计量学软件,选择合适的光谱波段,通过PLS算法分别建立了蛋白质、脂肪的校正模型,得到蛋白质、脂肪校正模型的决定系数R2分别为0.987和0.986,均方根误差RMSC分别为0.385和0.419。利用所建模型对预测样本数据集进行预测验证,得到蛋白质的标准差SEPProtein=0.768、脂肪的标准差SEPFat=1.109,表明所建模型具有较高的预测能力,已基本达到实用化要求。  相似文献   

8.
基于SiPLS算法的近红外光谱检测梨可溶性固形物含量   总被引:3,自引:0,他引:3  
为了提高近红外光谱技术在梨的可溶性固形物含量(SSC)检测中的精度和稳定性,对采集的原始光谱进行标准归一化(SNV)预处理,采用联合区间偏最小二乘法(SiPLS)建立了SSC的预测模型;通过交互验证法确定了模型的主成分因子数,以预测时的相关系数(Rp)和预测均方根误差(RMSEP)作为评价指标对模型预测结果进行了分析,并与经典偏最小二乘(PLS)模型、间隔偏最小二乘(iPLS)模型进行了比较.结果表明,利用SiPLS所建的预测模型的最优组合包含21个光谱区间并联合4个子区间和15个主成分因子,其预测集的相关系数和预测均方根误差分别为0.9633和0.203;说明利用近红外光谱结合SiPLS算法可以准确、无损检测梨中可溶性固形物含量.  相似文献   

9.
通过拟合带鱼糜及其鱼糕制品的近红外漫反射光谱与建立近红外的定量模型,用于带鱼糜及其鱼糕制品中磷酸盐含量的快速无损检测。以定标集和验证集的相关系数(rC, rV)及标准误差(SEC, SEP)作为评价模型优劣的根据。结果表明,采用偏最小二乘法(PLS)所建立的模型效果最佳,带鱼糜及其鱼糕制品的定标模型的相关系数分别为0.983和0.960,预测标准误差分别为0.032和0.101;验证集的相关系数分别为0.951和0.954,预测标准误差分别为0.058和0.097。利用近红外光谱技术快速无损测定带鱼糜及其鱼糕制品中的磷酸盐含量是可行的。  相似文献   

10.
基于OSC-PLS算法对大麦蛋白质含量进行定量分析的研究   总被引:1,自引:0,他引:1  
用色散扫描型仪器采集大麦样品的近红外光谱,扫描出的光谱携带了大量样品化学值信息,采用正交信号校正(OSC)预处理方法对这些原始光谱进行处理,剔除噪声等不相关因子以后建立偏最小二乘(PLS)近红外光谱分析模型(OSC-PLS),预测大麦蛋白质的含量,并与传统PLS建模方法进行对比。基于OSC-PLS算法的蛋白质含量近红外光谱分析模型的测定系数R2为0.901,检验集的化学值与模型预测值的相关系数r达到0.971 7,分析模型的预测标准偏差SD为0.545 0,相对标准偏差RSD为4.2%。结果表明,OSC-PLS回归方法能在较大程度上消除无关因素的影响,在简化模型的同时提高了模型的可解释性,能够建立准确的大麦蛋白质含量近红外预测模型,可代替经典分析方法,满足农产品快速分析的需要。  相似文献   

11.
以蔗糖溶液为研究对象,利用近红外光谱分别测量4,5和6 mm光程下不同浓度蔗糖溶液的透反射光谱,研究采用矢量归一化、基线偏移校正、多元散射校正、标准正态变量变换、一阶导数5种预处理方法消除光程差异的影响,并结合PLS方法建立校正集模型。与原始光谱的PLS模型相比,五种预处理方法均对模型的预测精度有不同程度的提高,其中,多元散射校正结合PLS方法建立的模型最优,使原始光谱的主成分数PC由6下降为3,决定系数R2由0.891 278提高到0.987 535,交互验证决定系数R2CV由0.888 374提高到0.983 343,校正标准偏差RMSEC由1.704%下降到0.89%,交互验证的校正标准偏差RMSECV由1.827%下降到1.05%,预测集样本的相关系数由0.950 89上升到0.976 22,预测标准偏差由0.014 36下降为0.01。结果表明,五种预处理方法中,多元散射校正法能够消除光程差异的干扰,提高模型的预测精度,改善稳定性。  相似文献   

12.
选取a,b,c和d四种类型近红外光谱仪,分别采用透射模式测定清开灵注射液近红外光谱,以高效液相色谱法测定值作为参考值,建立不同仪器类型清开灵注射液中黄芩苷偏最小二乘(PLS)和间隔偏最小二乘(iPLS)定量模型,并计算模型的多变量检测限(MDL)。四种仪器的PLS模型决定系数(R2)和预测均方差(SEP)分别为0.976 2和230.4 μg·mL-1(a),0.956 1和246.4 μg·mL-1(b),0.966 2和264.4 μg·mL-1(c),0.998 5和71.5 μg·mL-1(d),其中d型仪器较其他三种类型能获得更好的模型性能。经iPLS变量筛选后,a和b两种类型仪器得到的iPLS模型R2pre和SEP分别为0.977 1和218.4 μg·mL-1,0.975 4和219.4 μg·mL-1,相较其PLS模型预测性能未见明显提高;c和d未筛选出变量。不同仪器的MDL(Δ0.05, 0.05)均低于250 μg·mL-1,其中c和d型MDL分别低至58和2.9 μg·mL-1。表明不同类型仪器定量预测性能和MDL不同。创新性采用多变量检测限理论探讨了不同类型近红外仪器的检测性能,这一方法具有可行性。在实际应用中应根据研究载体的特征选择合适的仪器类型,以确保定量准确性。  相似文献   

13.
采用可见/近红外光谱对丙酯草醚胁迫下大麦叶片过氧化氢酶(catalase, CAT)与过氧化物酶(peroxidase, POD)含量预测进行研究。对500~900 nm光谱采用移动平均法(moving average, MA)11点平滑方法进行预处理。采用蒙特卡罗-偏最小二乘法(monte carlo-partial least squares, MCPLS)方法分别对于CAT与POD的含量预测剔除7个与8个异常样本。基于全部光谱建立了CAT与POD含量预测的PLS,最小二乘支持向量机(least-squares support vector machine, LS-SVM)与极限学习机(extreme learning machine, ELM)模型,ELM模型对CAT含量预测效果最好,建模集相关系数(correlation coefficient of calibration, Rc)为0.916,预测集相关系数Rp为0.786;PLS模型对POD含量预测效果最佳,Rc为0.984,Rp为0.876。采用连续投影算法(successive projections algorithm, SPA)算法分别为CAT与POD预测选择了8个与19个特征波长,基于特征波长建立的PLS,LS-SVM与ELM模型中,ELM模型对CAT与POD含量预测效果均最佳,CAT含量预测的相关系数为Rc=0.928,Rp=0.790;POD含量预测的相关系数Rc=0.965,Rp=0.941。基于全谱与基于特征波长的回归分析模型预测效果相当,且对POD含量的预测效果优于对CAT含量的预测效果,而这需要进一步研究以得到精度和稳定性更高的预测模型。研究结果表明,采用可见/近红外光谱结合化学计量学方法可以实现对除草剂胁迫下大麦叶片CAT与POD含量的预测。  相似文献   

14.
基于高光谱成像技术的油菜叶片SPAD值检测   总被引:11,自引:0,他引:11  
以油菜叶片为研究对象,利用高光谱成像技术,成功建立了叶绿素相对值SPAD值的预测模型。共采集了160个油菜叶片样本在380~1030 nm范围内的高光谱图像。选择500~900 nm之间的平均光谱作为油菜叶片样本的光谱。利用蒙特卡罗最小二乘法(monte carlo partial least squares, MC-PLS)剔除了13个异常样本,基于剩余的147个样本光谱数据与SPAD测量值进行分析,采用了不同的方法建立了多种预测模型,包括:全光谱的偏最小二乘法(partial least squares, PLS)模型,连续投影算法(successive projections algorithm, SPA)选择特征波长的PLS预测模型,“红边”位置(λred)的简单经验估测模型,三种植被指数R710/R760,(R750-R705)/(R750-R705)和R860/(R550*R708)分别建立的简单经验估测模型,以及基于这三种植被指数的PLS预测模型。建模结果显示,全光谱的PLS模型预测效果最为精确,其预测相关系数rp为0.833 9,预测均方根误差RMSEP为1.52。而使用SPA算法选出的8个特征波长所建立的PLS模型其预测结果可达到与全光谱的PLS模型非常接近的水平,而且在保证一定精度的条件下减少了大量运算,节省了运算时间,大幅提高了建模的速度。而基于红边位置和选择的三种植被指数而建立的简单经验估计模型其预测结果虽与基于全光谱的PLS预测模型有一定差距,但模型简单、运算量小,适合用于对精度要求不高的场合,对后续的便携仪器设备开发有一定的指导作用。  相似文献   

15.
利用近红外(NIR)光谱技术研究并建立可在线监测人参叶皂苷类成分的大孔树脂分离纯化工艺的方法。建立人参皂苷Rg1,Re和Rb1的高效液相色谱(HPLC)含量测定方法,收集人参叶提取物的40%乙醇大孔树脂洗脱液,采集其近红外光谱信息,并用已建立的HPLC法测定其中人参皂苷Rg1,Re和Rb1的含量,结合偏最小二乘法(PLS)建立上述三种成分及人参总皂苷的定量分析模型。建模过程中,以决定系数(R2),交叉验证均方根误差(RMSECV)为指标,确定用于建模的最优近红外波段和光谱预处理方法,结果表明人参皂苷Rg1,Re,Rb1及人参总皂苷模型的最佳建模波段均为12 000.8~7 499.8 cm-1,R2分别为0.988 7,0.960 3,0.990 5和0.970 1,RMSECV分别为0.059 7,0.072 2,0.004 88和0.075 5。将1个批次的人参叶提取物大孔树脂分离纯化工艺样品用于验证人参总皂苷定量分析模型的预测性能,总皂苷的NIR预测值和HPLC测定值的相关系数为0.992 8,平均预测回收率为100.52%,表明所建的模型预测效果良好。该法快速、简便、准确,可用于生产工艺过程中人参总皂苷的含量测定和质量控制。  相似文献   

16.
近红外光谱检测鲜枣酵母菌的动力学模型   总被引:1,自引:0,他引:1  
酵母菌是引起鲜枣发酵的主要微生物。以室温(20 ℃)贮藏的鲜枣为研究对象,应用近红外光谱,建立了检测鲜枣内酵母菌的动力学模型,从而预测室温贮藏鲜枣的保鲜期,以确保鲜枣的品质安全。通过对近红外光谱预处理方法和特征波数的优选,分别建立了室温贮藏下鲜枣内酵母菌的近红外光谱定量检测模型和反映其变化规律的动力学模型。结果表明,在全光谱范围内,采用多元散射校正光谱预处理方法,通过多元线性回归,建立的鲜枣内酵母菌菌落总数的近红外光谱模型预测效果最好,其中校正集的相关系数为0.950,均方根误差为2.560,预测集的相关系数为0.863,均方根误差为2.477。结合鲜枣的近红外光谱,其零级反应动力学模型可以较好地描述酵母菌的变化情况,鲜枣光谱吸光度值与贮藏时间的动力学模型为Bt=171.395-124.445x1-109.945x2-32.763x3-7.899x4-1.426x5-4.857x6+0.045t,其相关系数为0.996,标准偏差为2.561。酵母菌安全限量为100 000 cfu·g-1,当酵母菌菌落总数初始值小于等于10 cfu·g-1时,预测鲜枣在室温下的贮藏时间为8 d,也可根据鲜枣中的酵母菌菌落总数初始值的不同实现实时监测鲜枣内部酵母菌菌落总数信息及其安全的贮藏时间。  相似文献   

17.
将经验模态分解(EMD)和连续投影算法(SPA)结合用于面粉过氧化苯甲酰(BPO)添加量的近红外光谱检测分析中。在波长898~1 725 nm范围内采集添加了BPO的面粉样本光谱,先通过EMD分解法对其进行噪声预处理,然后利用SPA算法提取光谱特征波长。EMD处理后的光谱建模精度比原始光谱建模精度大大提高,通过SPA算法从512个波长中提取了7个特征波长,基于特征波长建立的模型,与EMD处理后全波长建模结果相比,建模波长个数大幅缩减,但是模型精度与全谱建模相当,结果表明:EMD和SPA结合可有效用于面粉BPO检测的光谱去噪和特征波长提取,该结果为开发便携式面粉BPO检测仪提供了参考和依据。  相似文献   

18.
近红外光谱的水稻抗性淀粉含量测定研究   总被引:3,自引:0,他引:3  
用化学法测定水稻抗性淀粉含量耗时长、成本高,为此,探索了基于近红外光谱技术(NIRS)的水稻抗性淀粉含量测定新途径。首先,采集了62份抗性淀粉含量差异较大的水稻的光谱数据,将光谱数据和已测定的化学值数据导入化学计量学软件,采用偏最小二乘法(PLS)建立了抗性淀粉含量的近红外定标模型,对不同预处理得到的预测模型进行了内部验证和外部验证。结果如下:内部交叉验证方面,未处理、MSC+1thD预处理、1thD +SNV预处理的决定系数(R2)分别为0.920 2,0.967 0,0.976 7,预测均方根误差(RMSEP)分别为1.533 7,1.011 2,0.837 1。外部验证方面,未处理、MSC+1thD预处理和1thD +SNV预处理的决定系数(R2)分别为0.805,0.976,0.992,绝对误差平均值分别为1.456,0.818,0.515,预测值和化学值之间没有显著差异(Turkey法多重比较),说明以近红外光谱分析法代替化学测定法是有可能的。在不同预处理方法之中,1thD+SNV的预处理方法无论内部验证还是外部验证都具有较高的决定系数和较低的误差值,定标模型精度更高,误差更小。  相似文献   

19.
为建立预测能力高、稳定性强的可见/近红外漫透射光谱无损检测黄花梨可溶性固形物(SSC)数学模型,对比各种预处理方法、变量优选方法、快速独立主成分分析(FICA)以及最小二乘支持向量机(LS-SVM)对黄花梨SSC模型的影响,得出最佳的组合方法用于建立黄花梨可溶性固形物(SSC)预测模型。采用Quality Spec型光谱仪采集550~950 nm波段范围内的黄花梨漫透射光谱并采用遗传算法、连续投影算法和CARS(competitive adaptive reweighted sampling)三种方法筛选黄花梨可溶性固形物的光谱特征变量,再结合FICA提取光谱主成分,最后采用LS-SVM建立黄花梨的SSC预测模型。结果显示,采用CARS筛选的21个变量,经FICA挑选出12个主成分数,联合LS-SVM所建立的CARS-FICA-LS-SVM黄花梨SSC预测模型性能最佳,建模集和预测集的决定系数及均方根误差分别为0.974,0.116%和0.918,0.158%,同直接采用PLS方法建模相比,变量数从401个下降到21,主成分数由14下降到12,建模集和预测集决定系数分别上升了0.023,0.019,而建模和预测均方根误差分别下降了0.042%和0.010%。CARS-FICA-LS-SVM建立黄花梨SSC预测模型能够有效地简化预测模型并提高预测模型精度。  相似文献   

20.
基于近红外光谱的杂交水稻种子发芽率测试研究   总被引:1,自引:0,他引:1  
现阶段水稻种子发芽率测试仍然按照传统的农作物种子发芽技术规定进行发芽试验,此方法存在试验周期长、成本高、专业性要求高等缺点,本研究提出一种基于近红外光谱技术的快速、无损测试杂交水稻种子发芽率的新方法。采用人工老化方法在温度45 ℃、湿度100%的条件下分别老化处理2个品种杂交水稻种子0,24,48,72,96,120,144 h;用近红外光谱仪分别采集2个品种不同老化时间段杂交水稻种子光谱数据共280份,随机分成校正集(168份)和检验集(112份);测试不同老化时间段的水稻种子发芽率;以偏最小二乘算法(PLS)建立了回归模型,分析不同光谱波段和比较不同光谱预处理方法对模型精度的影响。2个品种的水稻种子光谱数据采用全波段和标准化+正交信号校正预处理时模型最优,模型校正集决定系数(RC)与验证集相关系数(RP)分别为0.965和0.931,校正标准误差(SEC)与预测标准误差(SEP)分别为1.929和2.899,验证集预测值与真实值之间的相对误差在4.2%以内。研究结果表明利用近红外光谱分析技术进行杂交水稻种子发芽率的快速无损检测是可行的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号