首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The thickness of wetting films on a hydrophilic silica surface was investigated using a microinterferometric technique. Aqueous solutions of hydrophobically modified inulin (INUTEC®SP1) at various concentrations, in the presence or absence of NaCl or Na2SO4, were studied. The equilibrium film thickness (h eq) showed a complex dependence on INUTEC®SP1 concentration. At low electrolyte concentrations, h eq decreased with an increase in INUTEC®SP1 concentration, reaching a minimum at 10?6 mol dm?3. However, at high electrolyte concentrations, this dependence became less pronounced. At any given INUTEC®SP1 concentration, the equilibrium film thickness decreased with an increase in electrolyte concentration as a result of the compression of the electrical double layer reaching a minimum value. After that, the film thickness showed a small decrease with further increase in electrolyte concentration. This indicates that the electrostatic component of disjoining pressure can be neglected, and the steric repulsion of the loops and tails of INUTEC®SP1 determined the film thickness.  相似文献   

2.
Shear thickening and strain hardening behavior of hydrophobically modified hydroxyethyl cellulose (HMHEC) aqueous solutions was experimentally examined. We focused on the effects of polymer concentration, temperature, and addition of nonionic surfactant. It is found that HMHEC shows stronger shear thickening at intermediate shear rates in a certain concentration range. In this range, the zero-shear viscosity scales with polymer concentration as eta(0) approximately c(5.7), showing a stronger concentration dependence than for more concentrated solutions. The critical shear stress for complete disruption of the transient network follows tau(c) approximately c(1.62) in the concentrated regime. Dynamic tests of the transient network on addition of surfactants show that the enhanced zero-shear viscosity is due to an increase in network junction strength, rather than their number, which in fact decreases. The reduction in the junction number could partly explain the weak variation of strain hardening extent for low surfactant concentrations, because of longer and looser bridging chain segments, and hence lesser nonlinear chain stretching.  相似文献   

3.
The wetting properties of pulmonary surfactant aqueous solutions with respect to solid surfaces with different degree of hydrophobicity have been studied. The contact angles θ of drops from a pulmonary surfactant solution onto SiO2-glass surfaces have been measured as a function of their degree of hydrophobicity θ w. The completely hydrophilic SiO2-glass surface is essentially hydrophobized by the animal-derived pulmonary surfactant Curosurf. The hydrophobization depends on the surfactant concentration—the contact angles increase with increasing the Curosurf concentration C s in the low concentration range, but they remain almost constant in a wide range of C s >90 μg/ml. Additions like NaCl and bovine serum albumin influence the θ-values. The contact angles θ naturally increase with increasing θ w but this dependence is not linear—the curve steepens at larger θ w values. The thickness h of the wetting thin liquid films from Curosurf aqueous solutions depends on the hydrophobicity θ w of the solid surface and the h(θ w) curves always pass a minimum. The h-values, as well as the h(θ w) curve, are mainly determined by the steric and hydrophobic disjoining pressures, which depend on the orientations and conformations of the molecules adsorbed on the solid surface from the very complicated multi-component aqueous solutions.  相似文献   

4.
The adsorption isotherm of a hydrophobically modified inulin (INUTEC SP1) on polystyrene (PS) and poly(methyl methacrylate) (PMMA) particles was determined. The results show a high affinity isotherm for both particles as expected for a polymeric surfactant adsorption. The interactions forces between two layers of the hydrophobically modified inulin surfactant adsorbed onto a glass sphere and plate was determined using a modified atomic force microscope (AFM) apparatus. In the absence of any polymer, the interaction was attractive although the energy of interaction was lower than predicted by the van der Waals forces. The results between two layers of the adsorbed polymer confirms the adsorption isotherms results and provides an explanation to the high stability of the particles covered by INUTEC SP1 at high electrolyte concentration. Stability of dispersions against strong flocculation could be attributed to the conformation of the polymeric surfactant at the solid/liquid interface (multipoint attachment with several loops) which remains efficient at Na(2)SO(4) concentration reaching 1.5 mol dm(-3). The thickness of the adsorbed polymer layer in water determined both by AFM and rheology measurements, was found to be about 9 nm.  相似文献   

5.
Recently, steric repulsive forces induced by a new graft copolymer surfactant, which is based in inulin (polyfructose), have been described. Previous investigations by atomic force microscopy between solid surfaces covered with adsorbed surfactant indicated strong repulsive forces even at high electrolyte concentration, due to the steric repulsion produced by the surfactant hydration. In the present paper, the colloidal stabilization provided by this surfactant is studied by rheology. The measurements were carried out on sterically stabilized polystyrene (PS) and poly(methyl methacrylate) (PMMA) containing adsorbed surfactant (INUTEC SP1). Steady-state shear stress as a function of shear rate curves was established at various latex volume fractions. The viscosity volume fraction curves were compared with those calculated using the Doughtry-Krieger equation for hard sphere dispersions. From the experimental eta r-phi curves the effective volume fraction of the latex dispersions could be calculated and this was used to determine the adsorbed layer thickness Delta. The value obtained was 9.6 nm, which is in good agreement with that obtained using atomic force microscopy (AFM). Viscoelastic measurements of the various latex dispersions were carried out as a function of applied stress (to obtain the linear viscoelastic region) and frequency. The results showed a change from predominantly viscous to predominantly elastic response at a critical volume fraction (phi c). The effective critical volume fraction, phi eff, was calculated using the adsorbed layer thickness (Delta) obtained from steady-state measurements. For PS latex dispersions phi eff was found to be equal to 0.24 whereas for PMMA phi eff=0.12. These results indicated a much softer interaction between the latex dispersions containing hydrated polyfructose loops and tails when compared with latices containing poly(ethylene oxide) (PEO) layers. The difference could be attributed to the stronger hydration of the polyfructose loops and tails when compared with PEO. This clearly shows the much stronger steric interaction between particles stabilized using hydrophobically modified inulin.  相似文献   

6.
Using the interferometric method of Scheludko-Exerowa for investigation of foam films, we have obtained results using a hydrophobically modified inulin polymeric surfactant (INUTEC SP1). Measurements were carried out at constant INUTEC SP1 concentration of 2 x 10(-)(5) mol.dm(-)(3) and at various NaCl concentrations (in the range 1 x 10(-)(4) to 2 mol.dm(-)(3)). At constant capillary pressure of 50 Pa, the film thickness decreased gradually with an increase in NaCl concentration up to 10(-)(2) mol.dm(-)(3) NaCl above which the film thickness remains virtually constant at about 16 nm. This reduction in film thickness with an increase in NaCl concentration is due to the compression of the double layer and at the critical electrolyte concentration (C(el,cr) = 10(-)(2) mol.dm(-)(3)) the electrostatic component of the disjoining pressure is completely screened and the remaining pressure is due to the steric interaction between the adsorbed polymer layers. Disjoining pressure-thickness (Pi-h) isotherms were obtained at C(el) < C(el,cr) (10(-)(4) - 10(-)(3) mol.dm(-)(3)) and C(el) > C(el,cr) (0.5, 1, and 2 mol.dm(-)(3)). In the first case, the disjoining pressure isotherms could be fitted using the classical DLVO theory, Pi = Pi(el) + Pi(vw), and using the constant charge model. At C(el) > C(el,cr), the main repulsion is due to the steric interaction between the polyfructose loops that exist at the air-water interface, i.e., Pi = Pi(st) + Pi(vw). Under these conditions, there is a sharp transition from DLVO to non-DLVO forces. In the latter case, the interaction could be described using the de Gennes' scaling theory. This gave an adsorbed layer thickness of 6.5 nm which is in reasonable agreement with the values obtained at the solid-solution interface. The Pi-h isotherms showed that these foam films are not very stable and they tend to collapse above a critical capillary pressure (of about 1 x 10(3) Pa), and these results could be used to predict the foam stability.  相似文献   

7.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated by measuring the disjoining pressure of a microscopic horizontal film between two macroscopic emulsion drops of isoparaffinic oil (Isopar M). A special measuring cell was used for this purpose whereby the disjoining pressure Pi was measured as a function of the equivalent film thickness hw. The latter was determined using an interferometric method. In this way Pi-hw curves were established at a constant INUTEC SP1 concentration of 2x10(-5) mol.dm-3 and at various NaCl concentrations. At a constant disjoining pressure of 36 Pa, a constant temperature of 22 degrees C, and a film radius of 100 microm, hw decreased with an increase in the NaCl concentration, Cel, and reached a constant value of 11 nm at Cel=5x10(-2) mol.dm-3. This reduction in film thickness is due to the compression of the electrical double layer, and at the above critical NaCl concentration any electrostatic repulsion is removed and only steric interaction remains. This critical electrolyte concentration represents the transition from electrostatic to steric interaction. At a NaCl concentration of 2x10(-4) mol.dm-3 the Pi-hw isotherms showed a gradual decrease in hw with an increase in capillary pressure, after which there was a jump in hw from approximately 30 to approximately 7.2 nm when Pi reached a high value of 2-5.5 kPa. This jump is due to the formation of a Newton black film (NBF), giving a layer thickness of the polyfructose loops of approximately 3.6 nm. The film thickness did not change further when the pressure reached 45 kPa, indicating the high stability of the film. Pi-hw isotherms were obtained at various NaCl concentrations, namely, 5x10(-2), 5x10(-1), 1.0, and 2.0 mol.dm-3. The initial thicknesses are within the range 9-11 nm, after which a transition zone starts, corresponding to a pressure of about 0.5 kPa. In this zone all films transform to an NBF with a jump, after which the thickness remains constant with a further increase in the disjoining pressure up to 45 kPa, with no film rupture. This indicates the very high stability of the NBF in the presence of high electrolyte concentrations. The high emulsion film stability (due to strong steric repulsions between the strongly hydrated loops of polyfructose) is correlated with the bulk emulsion stability.  相似文献   

8.
The microviscosity of hydrophobically modified hydroxyethyl cellulose (HMHEC) aqueous solutions is experimentally determined by conductometry with added ions as probe. Compared to its bulk viscosity, the microviscosity of HMHEC solution could be lower by four orders of magnitude. Since the electric conductivity reduction of added NaCl is almost the same for HMHEC and its unmodified counterpart at an equal weight concentration, one can conclude that the hydrophobic modification for the polymer hardly has any effect on the solution's microviscosity.  相似文献   

9.
The dynamic and structural perturbations that result from the interactions between the anionic surfactant sodium dodecyl sulfate (SDS) and the hydrophobically modified biopolymer alginate (HM-alginate) have been studied with the aid of rheological methods, turbidimetry, and small-angle neutron scattering (SANS). The rheological results for a semidilute HM-alginate solution in the presence of SDS disclose strong interactions between HM-alginate and SDS at a low level of surfactant addition, and this feature is accompanied by enhanced turbidity. At higher surfactant concentrations the association complexes are disrupted. A strong temperature effect of the viscosity is observed in HM-alginate solutions at moderate SDS concentrations, where an elevated temperature leads to enhanced chain mobility, which promotes a breakup of the association complexes. The SANS results reveal a pronounced peak in the plot of scattered intensity versus wavevector q at intermediate q values for SDS concentrations above the critical micelle concentration (cmc). With contrast-matching conditions, using deuterated SDS instead of SDS, no interaction peak appears but an "upturn" in the scattered intensity is observed at small q value. The magnitude of this effect decreases with increasing surfactant concentration, showing clearly that SDS is capable of breaking up the large aggregates created.  相似文献   

10.
Three-phase separation for Triton X-114 or Triton X-100 solutions with addition of hydrophobically modified hydroxyethyl cellulose was investigated experimentally. When the surfactant concentration was high enough, the solution slightly above the cloud point could separate into three macroscopic phases: a cloudy phase in between a clear phase and a bluish, translucent phase. The rate of phase separation was very low with the formation of the clear and cloudy phases followed by the emergence of the bluish phase. The volume fraction of the cloudy phase increases linearly with the global polymer concentration, whereas the volume fraction of the bluish phase increases linearly with the global surfactant concentration. Composition analyses found that most of the polymer stayed in the cloudy phase, as opposed to most of the surfactant in the bluish phase. The interesting phase behavior can be explained by an initial associative phase separation followed by a segregative phase separation in the cloudy phase.  相似文献   

11.
The interaction forces in emulsion films stabilized using hydrophobically modified inulin (INUTEC SP1) were investigated as a function of concentrations of electrolytes of different types (NaCl, Na2SO4, and MgSO4). At a constant disjoining pressure of 36 kPa, a constant temperature of 22 degrees C, and a film radius of 100 microm, the film thickness, hw, decreased with an increase in electrolyte concentration until a critical value, Cel,cr, was reached above which hw remained constant. Cel,cr decreased with an increase in electrolyte valency (Cel,cr = 5 x 10(-2) mol.dm(-3) for NaCl and 1 x 10(-2) mol.dm(-3) for Na2SO4 and MgSO4). The reduction in film thickness below Cel,cr could be accounted for by the compression of the electrical double layer. The Pi-hw isotherms below Cel,cr could be fitted using the Derjaguin-Landau-Verwey-Overbeek (DLVO) theory (constant charge and constant potential cases were considered). At a certain pressure, the film jumped to a Newton black film. The pressure at the jump decreased with an increase in electrolyte valency as a result of the reduction of the electrostatic barrier. At electrolyte (NaCl, Na2SO4, or MgSO4) concentrations higher than Cel,cr, the jump occurred at a low pressure that was independent of the electrolyte type. The thickness of the Newton black film was independent of both the concentration and nature of the electrolytes studied. The results show clearly that the polyfructose loops and tails remain strongly hydrated both in water and in high concentrations of electrolytes of different types, and these results explain the high INUTEC SP1 emulsion stability against coalescence of emulsions prepared under such conditions.  相似文献   

12.
At low pH conditions and in the presence of anionic, cationic, and nonionic surfactants, hydrophobically modified alkali-soluble emulsions (HASE) exhibit pronounced interaction that results in the solubilization of the latex. The interaction between HASE latex and surfactant was studied using various techniques, such as light transmittance, isothermal titration calorimetry, laser light scattering, and electrophoresis. For anionic surfactant, noncooperative hydrophobic binding dominates the interaction at concentrations lower than the critical aggregation concentration (CAC) (C < CAC). However, cooperative hydrophobic binding controls the formation of mixed micelles at high surfactant concentrations (C > or = CAC), where the cloudy solution becomes clear. For cross-linked HASE latex, anionic surfactant binds only noncooperatively to the latex and causes it to swell. For cationic surfactant, electrostatic interaction occurs at very low surfactant concentrations, resulting in phase separation. With further increase in surfactant concentration, noncooperative hydrophobic and cooperative hydrophobic interactions dominate the binding at low and high surfactant concentrations, respectively. For anionic and cationic surfactant systems, the CAC is lower than the critical micelle concentration (CMC) of surfactants in water. In addition, counterion condensation plays an important role during the binding interaction between HASE latex and ionic surfactants. In the case of nonionic surfactants, free surfactant micelles are formed in solution due to their relatively low CMC values, and HASE latexes are directly solubilized into the micellar core of nonionic surfactants.  相似文献   

13.
Rheological methods and small angle neutron scattering (SANS) were used in the characterization of dilute and semidilute aqueous solutions, both with and without added salt, of anionic poly(vinyl alcohol) (PVA) and its hydrophobically modified analogue (HM-PVA). The rheological measurements showed that the concentration induced viscosification effect and elastic responses are considerably stronger for solutions of HM-PVA than in solutions of the unmodified polyelectrolyte. Over the considered polymer concentration domain, the solutions of PVA exhibit virtually Newtonian behavior, whereas strong shear thinning effects are observed in the HM-PVA solutions. The SANS results for HM-PVA solutions reveal a pronounced peak in the plot of scattering intensity versus scattering wavevector q at intermediate q values and the position of the maximum scales with polymer concentration as qmaxc0.28±0.02. This peak is suppressed in solutions of the unmodified polyelectrolyte and merely a shoulder in the scattering curve appears. Additionally, an “upturn” in the scattered intensity is observed at small q values and the magnitude of this effect depends on polymer concentration, hydrophobicity and salt addition. At large q values, the SANS results from HM-PVA solutions suggest morphological changes, from rod-like chains to a network of semiflexible chains, as the polyelectrolyte concentration increases.  相似文献   

14.
Summary From studies of aqueous solutions of dodecylammoniumnitrate an association mechanism has been proposed involving multiequilibrium. In the concentration range considered we can differentiate between two aspects: ranges of marked qualitative and quantitative changes and formation of differently structured surfactant species.
Zusammenfassung Aus der Untersuchung wäßriger Lösungen von Dodecylammoniumnitrat würde ein Assoziationsmechanismus abgeleitet, welcher ein Multiequilibrium beinhaltet. Im untersuchten Konzentrationsbereich können zwei Bereiche unterschieden werden: Bereiche mit ausgeprägten qualitativen und quantitativen Änderungen und Bereiche mit der Bildung von verschieden strukturierten oberflächenaktiven Spezies.
  相似文献   

15.
In this investigation, hydrophobically modified polyacrylamide with low amounts of anionic long‐chain alkyl was synthesized by the free radical polymerization in deionized water. This water‐soluble copolymerization method is more convenient compared with the traditional micellar copolymerization methods. The copolymers were characterized using Fourier transform infrared, 1H NMR, and the molecular weight and polydispersity were determined using gel permeation chromatography. The solution behavior of the copolymers was studied as a function of composition, pH, and added electrolytes. As NaCl was added to solutions of AM/C11AM copolymers or pH was lowered, the shielding or elimination of electrostatic repulsions between carboxylate groups of the C11AM unit lead to coil shrinkage. The steady shear viscosity and dynamic shear viscoelastic properties in semidilute, salt‐free aqueous solutions were conducted to examine the concentration effects on copolymers. In addition, the shear superimposed oscillation technique was used to probe the structural changes of the network under various stresses or shear conditions. We prepared hydrophobically modified polyacrylamide with N‐alkyl groups in the aqueous medium. The advantage of this method is that the production is pure without surfactants. These results suggest that the unique aqueous solution behavior of the copolymers is different from conventional hydrophobically associating acrylamide. © 2008 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 46: 2465–2474, 2008  相似文献   

16.
Oil-in-water (O/W) emulsions were prepared using a hydrophobically modified inulin surfactant, INUTEC®SP1. The quality of the emulsions was evaluated using optical microscopy. Emulsions, prepared using INUTEC®SP1 alone had large droplets, but this could be significantly reduced by addition of a cosurfactant to the oil phase, namely Span 20. The stability of the emulsions was investigated in water, in 0.5, 1.0 and 2 mol dm−3 NaCl as well as 0.5, 1.0, 1.5 and 2 mol dm−3 MgSO4. All emulsions containing NaCl did not show any strong flocculation or coalescence up to 50 °C for almost 1 year storage. With MgSO4 they were stable up to 50 °C and 1 mol dm−3. The stability of the emulsions against strong flocculation and coalescence could be attributed to the conformation of the polymeric surfactant at the O/W interface (multipoint attachment with several loops) and the strong hydration of the polyfructose chain in such high electrolyte concentrations. This was confirmed using cloud point measurements, which showed absence of any cloudiness up to 100 °C and at NaCl concentrations reaching 4 mol dm−3 and MgSO4 reaching 1 mol dm−3. These high cloud points in electrolyte solutions could not be reached with polyethylene glycol. This clearly demonstrated the superiority of INUTEC®SP1 surfactant as an emulsion stabiliser when compared with surfactants based on polyethylene glycol. Viscoelastic measurements showed a gradual increase in the storage modulus G′ with storage time both at room temperature and 50 °C. This was indicative of weak flocculation and absence of coalescence. The weak flocculation of the emulsions could be attributed to the presence of an energy minimum, Gmin, in the energy–distance curve.  相似文献   

17.
Nonionic surfactant and temperature effects on the viscosity of hydrophobically modified hydroxyethyl cellulose (HMHEC) solutions are investigated experimentally. Weak shear thickening at intermediate shear rates takes place for HMHEC at moderate concentrations and becomes more significant at lower temperatures. While this amphiphilic polymer in surfactant-free solution does not turn turbid by heating to 95 degrees C, its mixture with nonionic surfactant shows a lower cloud point temperature than does a pure surfactant solution. For some mixture cases, phase separation takes place at temperatures as low as 2 degrees C. The drop of cloud point temperature is attributed to an additional attractive interaction between mixed micelles via chain bridging. With increasing temperature, the viscosity of an HMHEC-surfactant mixture in aqueous solution first decreases but then rises considerably until around the cloud point. The observed viscosity increase can be explained by the interchain association because of micellar aggregation.  相似文献   

18.
19.
Ellipsometry, surface tensiometry, and contact-angle measurement have been used to study the transition between partial wetting and pseudo-partial wetting of surfactant solutions by alkanes. In the partial wetting regime, the air-water surface tension is the same with and without alkane. In the pseudo-partial wetting regime, the air-water surface tension is lowered by the presence of alkane, showing that oil is solubilised into the surfactant monolayer. A discontinuous change in the coefficient of ellipticity with increasing surfactant concentration provides unequivocal evidence for the first-order nature of the wetting transitions. Ellipsometry has been used to explore the generality of wetting transitions of alkanes (dodecane, hexadecane, and squalane) on surfactant solutions [dodecyltrimethylammonium bromide, tetredecyltrimethylammonium bromide, dibucaine hydrochloride, and Aerosol OT (AOT)]. Of the systems studied, only hexadecane on AOT solutions did not show a wetting transition. Excess alkane remains as a lens on the surface of the surfactant solutions at all concentrations, but the contact angle is a minimum at the wetting transition. A semiquantitative model for the variation of the contact angle with surfactant concentration is provided.  相似文献   

20.
The wetting properties of surfactants on solid surfaces form the basis of many industrial and biological processes. The preferential adsorption of the surfactants from aqueous solutions onto solid surfaces alter the adhesion tension of the surface and this behavior may cause partial to complete wetting of the surfaces by the aqueous surfactant solutions. However, different types of surfactants show different wetting characteristics. To study the wetting properties of biologically produced rhamnolipids (RL), advancing contact angles of the aqueous solutions of the RL mixture of R1 and R2 in a ratio of R2/R1=1.1 were measured as a function of surfactant concentration. For a comparison of the wetting performance, sodium dodecyl sulfate (SDS) was chosen as the reference surfactant. A hydrophilic glass surface, a hydrophobic polymer, polyethylene terephthalate (PET), and gold surface were used as the solid surfaces to determine the wetting characteristics of rhamnolipids. At low surfactant concentrations (RL concentration <3x10(-5)M, SDS concentration<3x10(-4)M) contact angle (Theta) varied in a certain range depending on the character of the surfactant interactions with the surface. This was followed by a decrease in contact angle. Parallel to this behavior, at low surfactant concentrations the adhesion tension decreased, then remained constant and an increase at higher surfactant concentrations was obtained on hydrophobic surfaces. On hydrophilic surfaces a steady decrease in adhesion tension was observed with both surfactant solutions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号