首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The thickness of wetting films on a hydrophilic silica surface was investigated using a microinterferometric technique. Aqueous solutions of hydrophobically modified inulin (INUTEC®SP1) at various concentrations, in the presence or absence of NaCl or Na2SO4, were studied. The equilibrium film thickness (h eq) showed a complex dependence on INUTEC®SP1 concentration. At low electrolyte concentrations, h eq decreased with an increase in INUTEC®SP1 concentration, reaching a minimum at 10?6 mol dm?3. However, at high electrolyte concentrations, this dependence became less pronounced. At any given INUTEC®SP1 concentration, the equilibrium film thickness decreased with an increase in electrolyte concentration as a result of the compression of the electrical double layer reaching a minimum value. After that, the film thickness showed a small decrease with further increase in electrolyte concentration. This indicates that the electrostatic component of disjoining pressure can be neglected, and the steric repulsion of the loops and tails of INUTEC®SP1 determined the film thickness.  相似文献   

2.
The oxidation processes of the radiation-generated, three-electron-bonded intermediates AcMet2 [S??S]+ and AcMet [S??Br] were investigated by pulse radiolysis via their reactions with tryptophan (TrpH). These intermediates were derived from N-acetyl-methionine amide (N-AcMetNH2) and N-acetyl-methionine methyl ester (N-AcMetOMe). The bimolecular rate constant k of the reaction between each intermediate and l-tryptophan (TrpH) was measured. For N-AcMetNH2, k for the reaction of AcMet2 [S??S]+ with TrpH were 3.4?×?108 and 2.2?×?108?dm3?mol?1?s?1 at pH?=?1 and 4.5, respectively. For N-AcMetOMe, k for the reaction of AcMet2 [S??S]+ with TrpH were 4.0?×?108 and 2.8?×?108?dm3?mol?1?s?1 at pH 1 and 4.5, respectively. The rate constants for the intermolecular transformation of Met [S??Br] into TrpH+ or Trp were also estimated. For N-AcMetNH2, k for the reaction of AcMet2 [S??Br] with TrpH were 2.6?×?108 and 3.3?×?108?dm3?mol?1?s?1 at pH 1 and 4.5, respectively. Related mechanisms were discussed.  相似文献   

3.
The redox reaction between tris(1,10-phenanthroline)iron(II), [Fe(phen)3]2+, and azido-pentacyanocobaltate(III), [Co(CN)5N3]3? was investigated in three cationic surfactants: dodecyltrimethylammonium bromide (DTAB), tetradecyltrimethylammonium bromide (TTAB) and cetyltrimethylammonium bromide (CTAB) in the presence of 0.1?M NaCl at 35°C. Second-order rate constant in the absence and presence of surfactant, kw and kψ, respectively, were obtained in the concentration ranges DTAB?=?0???4.667?×?10?4?mol?dm?3, TTAB?=?0–9.364?×?10?5?mol?dm?3, CTAB?=?0???6.220?×?10?5?mol?dm?3. Electron transfer rate was inhibited by the surfactants with premicelllar activity. Inhibition factors, kw/kψ followed the trend CTAB?>?TTAB?>?DTAB with respect to the surfactant concentrations used. The magnitudes of the binding constants obtained suggest significant electrostatic and hydrophobic interactions. Activation parameters ΔH, ΔS, and Ea have larger positive values in the presence of surfactants than in surfactant-free medium. The electron transfer is proposed to proceed via outer-sphere mechanism in the presence of the surfactants.  相似文献   

4.
The direct electron transfer of glucose oxidase (GOx) was achieved based on the immobilization of CdSe@CdS quantum dots on glassy carbon electrode by multi-wall carbon nanotubes (MWNTs)-chitosan (Chit) film. The immobilized GOx displayed a pair of well-defined and reversible redox peaks with a formal potential (E θ’) of ?0.459 V (versus Ag/AgCl) in 0.1 M pH 7.0 phosphate buffer solution. The apparent heterogeneous electron transfer rate constants (k s) of GOx confined in MWNTs-Chit/CdSe@CdS membrane were evaluated as 1.56 s?1 according to Laviron's equation. The surface concentration (Γ*) of the electroactive GOx in the MWNTs-Chit film was estimated to be (6.52?±?0.01)?×?10?11?mol?cm?2. Meanwhile, the catalytic ability of GOx toward the oxidation of glucose was studied. Its apparent Michaelis–Menten constant for glucose was 0.46?±?0.01 mM, showing a good affinity. The linear range for glucose determination was from 1.6?×?10?4 to 5.6?×?10?3?M with a relatively high sensitivity of 31.13?±?0.02 μA?mM?1?cm?2 and a detection limit of 2.5?×?10?5?M (S/N=3).  相似文献   

5.
The spectroscopic and kinetic data of the short lived intermediates obtained by the attack of H-radicals on fluoro-, chloro-, bromobenzene, benzylchloride and phenethylchloride in aqueous solutions were studied by pulse radiolysis technique. The first three yield cyclohexadienylradicals (k=1–1.5×109 dm3 mol?1 s?1) with characteristic absorption maxima in the region 220–330 nm. In the case of benzylchloride a quantitative abstraction of chlorine by the H-atoms is observed (k=9.5×108 dm3 mol?1 s?1) leading to the formation of the benzylradical (λmax=257, 303, 317.5nm). The attack of H-atoms on phenethylchloride can occur on the aromatic ring forming also a cyclohexadienylradical (k=2.0×109 dm3 mol?1 s?1, λmax=317, 323nm) as well as on the side chain (k=1.5×108 dm3 mol?1 s?1) yielding H2. The intermediates decay according to a second order reaction withk=2 to 4.6×109 dm3 mol?1 s?1. To elucidate reaction mechanisms, steady state radiolysis experiments on the same systems were performed.  相似文献   

6.
The glass–ceramic electrolytes of (100?x)(0.8Li2S·0.2P2S5xLiI (in mole percent; x?=?0, 2, 5, 10, 15, 20, and 30) were prepared by mechanical milling and subsequent heat treatment. Crystalline phases analogous to the thio-LISICON region II or III in the Li2S–GeS2–P2S5 system were precipitated. The thio-LISICON III analog phase was mainly precipitated at the composition x?=?0, and the thio-LISICON II analog phase was precipitated in the composition range from x?=?2 to 15. The X-ray diffraction peaks of the thio-LISICON II analog phase shifted to the lower diffraction angle side with increasing the LiI content. High conductivities above 2?×?10?3?S?cm?1 at room temperature were observed in the glass–ceramics at the wide composition range from x?=?2 to 15. The glass–ceramic electrolyte at x?=?5 with the highest conductivity of 2.7?×?10?3?S?cm?1 showed a wide electrochemical window of about 10 V. The addition of LiI to the 80Li2S·20P2S5 (in mole percent) glass was effective in crystallizing the thio-LISICON II analog phase with high conductivity from the glass.  相似文献   

7.
8.
The silver nanoparticles doped poly-glycine composite membrane was prepared by cyclic voltammetry on the surface of the glassy carbon electrode (GCE). The morphology and electrochemical properties were characterized by scanning electron microscopy and cyclic voltammetry, respectively, and in detail, the electrochemical behaviors of the norepinephrine (NE) on this membrane were studied. The results showed that the membrane had good catalytic properties for the oxidative–reductive reaction of NE. NE had a couple of sensitive oxidative-reductive current peaks. The reductive peak currents were linearly with its concentration in the range of 1.90?×?10?7 to 7.00?×?10?6 and 7.00?×?10?6 to 1.00?×?10?4?mol l?1, and the linear regressive equations were i pc (A)?=?3.73?×?10?6?+?0.70C (mol l?1), i pc (A)?=?9.83?×?10?5?+?0.12C (mol l?1), respectively, with the relate coefficient (r) of 0.9926 and 0.9944. The detection limit was 1.2?×?10?7?mol l?1 (S/N?=?3), which could be used to determine the content of NE and at the same time, eliminate the interference of the ascorbic acid (AA). The proposed method had high sensitivity, good selectivity and stability.  相似文献   

9.
For compositions such that Ni2+ and Ni(CN)2?4 can co-exist, there is very strong adsorption of Ni(CN)2 on mercury electrodes. The electrochemical characteristics of this adsorption are quantitatively accounted for by a Frumkin isotherm, with an adsorption constant, β=(4.1±0.2)×106 mol?2 dm6, and a positive (attraction) constant, A=3.9±0.1. The surface layer appears to consist of strongly interacting NiNi(CN)4 units. The most probable model of surface equilibria involves direct co-adsorption of Ni2+ and Ni(CN)2?4 from the bulk on mercury. Electroreduction of an adsorbate proceeds with the uptake of one electron per NiNi(CN)4 unit.  相似文献   

10.
As a natural chiral selector, bovine serum albumin (BSA) has been used to recognize penicillamine (Pen) enantiomers through electrochemical methods. The recognition and assay rely on the stereoselectivity of BSA embedded in ultrathin Al2O3 sol–gel film coated on the surface of glassy carbon electrode (BSA/GCE). The enantioselective interaction between Pen enantiomers and BSA was monitored by cyclic voltammetry and electrochemical impedance spectroscopy measurements, from which larger response signals were obtained from d-Pen. The factors influencing the performance of the modified biosensor were also investigated. The association constant (K) was calculated to be 1.93?×?104?L?mol?1 for d-Pen and 1.20?×?103?L?mol?1 for l-Pen. A good linear response was exhibited with the concentration of Pen enantiomers by BSA/GCE over the range of 1?×?10?8–1?×?10?1?mol?L?1 with a detection limit of 3.31?×?10?9?mol?L?1.  相似文献   

11.

Dynamic interfacial tension (DIT) and interface adsorption kinetics at the n‐decane/water interface of 3‐dodecyloxy‐2‐hydroxypropyl trimethyl ammonium chloride (R12TAC) were measured using spinning drop method. The effects of RnTAC concentration and temperature on DIT have been investigated, the reason of the change of DIT with time has been discussed. The effective diffusion coefficient, D a, and the adsorption barrier, ?a, have been obtained with extended Word‐Tordai equation. The results show that the higher the concentration of surfactants is, and the smaller will be the DIT and the lower will be the curve of the DIT, and the R12TAC solutions follow a mixed diffusion‐activation adsorption mechanism in this investigation. With increase of concentration in bulk solution of R12TAC from 8×10?4 mol · dm?3 to 4×10?3 mol · dm?3, D a decreases from 2.02×10?10 m?2 · s?1 to 1.4×10?11 m?2 · s?1 and ? a increases from 2.60 kJ · mol?1 to 9.32 kJ · mol?1, while with increase of temperature from 30°C to 50°C, D a increases from 2.02×10?10 m?2 · s?1 to 5.86×10?10 m?2 · s?1 and εa decreases from 2.60 kJ · mol?1 to 0.73 kJ · mol?1. This indicates that the diffusion tendency becomes weak with increase strength of the interaction between surfactant molecules and that the thermo‐motion of molecules favors interface adsorption.  相似文献   

12.
[CrIII(LD)(Urd)(H2O)4](NO3)2?·?3H2O (LD?=?Levodopa; Urd?=?uridine) was prepared and characterized. The product of the oxidation reaction was examined using HPLC. Kinetics of the oxidation of [CrIII(LD)(Urd)(H2O)4]2+ with N-bromosuccinimide (NBS) in an aqueous solution was studied spectrophotometrically, with 1.0–5.0?×?10?4?mol?dm?3 complex, 0.5–5.0?×?10?2?mol?dm?3 NBS, 0.2–0.3?mol?dm?3 ionic strength (I), and 30–50°C. The reaction is first order with respect to [CrIII] and [NBS], decreases as pH increases in the range 5.46–6.54 and increases with the addition of sodium dodecyl sulfate (SDS, 0.0–1.0?×?10?3?mol?dm?3). Activation parameters including enthalpy, ΔH*, and entropy, ΔS*, were calculated. The experimental rate law is consistent with a mechanism in which the protonated species is more reactive than its conjugate base. It is assumed that the two-step one-electron transfer takes place via an inner-sphere mechanism. A mechanism for this reaction is proposed and supported by an excellent isokinetic relationship between ΔH* and ΔS* for some CrIII complexes. Formation of [CrIII(LD)(Urd)(H2O)4]2+ in vivo probably occurs with patients who administer the anti-Parkinson drug (Levodopa), since CrIII is a natural food element. This work provides an opportunity to identify the nature of such interactions in vivo similar to that in vitro.  相似文献   

13.
An application of the flow differential pulse voltammetry with tubular detector based on silver solid amalgam for determination of antineoplastic drug lomustine in pharmaceutical preparations is presented. The highest sensitivity was obtained in [0.10 mol dm?3 MES; 2.00 mol dm?3 NaCl; pH 6.0]:EtOH (9 : 1) with flow rate 0.50 mL min?1, and the magnitude of the modulation amplitude ?0.070 V. The calibration dependence was linear in the range 1×10?6–1 × 10?4 mol dm?3 (R2=0.999). The limit of detection was 1.5×10?7 mol dm?3. This method was successfully used for determination of lomustine in real samples of chemotherapy drug CeeNU Lomustine 40 mg.  相似文献   

14.
Some new photorefractive polymers containing indole groups were synthesized and characterized by IR, 1H NMR, and UV techniques. The Gibbs free energy changes (ΔG) of corresponding reactions were predicted by density functional theory to be 4.19 and ?9.71 kcal mol?1 for –H, and 4.12 and ?11.93 kcal mol?1 for –OCH3, respectively. The glass transition temperature (T g) of the polymers were about 96–111 °C. The nonlinear second-order optical susceptibility was predicted to be 2.84 × 10?30 and 1.04 × 10?30 esu by theoretical quantum calculations.  相似文献   

15.

The change in the thermodynamic properties of triclosan adsorption on three activated carbons with the different surface chemistry was studied through immersion calorimetry and equilibrium data; the amount adsorbed of triclosan (Q) during calorimetry was determined and correlated with the energy associated with adsorbate–adsorbent interactions in the adsorption process. It was noted that triclosan adsorption capacity decreases with an increase in oxygenated surface groups. For an activated carbon oxidized with HNO3 (OxAC), the amount adsorbed was 8.50?×?10?3 mmol g?1, for a activated carbon without modification (GAC) Q?=?10.3?×?10?3 mmol g?1 and for a activated carbon heated at 1073 K (RAC1073) Q?=?11.4?×?10?3 mmol g?1. The adsorbed amounts were determined by adjusting the isotherms to the Sips model. For the activated carbon RAC1073, the immersion enthalpy (ΔHimm) was greater than those of the other two activated carbons due to the formation of interactions with the solvent (ΔHimmOxAC?=?? 27.3 J g?1?<?ΔHimmGAC?=?? 40.0 J g?1?<?ΔHimm RAC1073?=???60.7 J g?1). The changes in the interaction enthalpy and Gibbs energy are associated with adsorbate–adsorbent interactions and side interactions such as the adsorbate–adsorbate and adsorbate–solvent interactions.

  相似文献   

16.
The kinetics of formation of the 1?:?1 complex of chromium(III) with 1,3-propanediamine-N,N′-diacetate-N,N′-di-3-propionate (1,3-pddadp) were followed spectrophotometrically at λ max?=?557?nm. The reaction was first-order in chromium(III). Increasing the 1,3-pddadp concentration from 2.2?×?10?2 to 0.11?mol?dm?3 accelerated the reaction rate. Increasing the hydrogen ion concentration from 1.995?×?10?5 to 6.31?×?10?4 mol?dm?3 retarded the reaction rate. The reaction rate was also retarded by increasing ionic strength and dielectric constant of the reaction medium. A mechanism was suggested to account for the results obtained which involves ion-pair formation between the various reactants. Values of 22?kJ?mol?1 and ?115?J?K?1 mol?1 were obtained for the energy and the entropy of activation, respectively, which indicate an associative mechanism. The logarithm of the formation constant of the 1?:?1 complex formed was 11.3.  相似文献   

17.
The thermal-mechanical properties of unsaturated polyester (UP) composite were enhanced by the dispersion of silica aerogel (SA) with preserved pores. Low-cost SA was prepared from rice husk via the sol-gel process and ambient pressure drying. A new method was proposed to encapsulate the hydrophobic aerogel surface pores with hydrophilic polyvinyl alcohol (PVA) film using the fluidized-bed coating process. The dispersion of PVA-coated aerogel with preserved pores in the polyester matrix resulted in an increase of specific compressive strength (44.1?MPa?·?cm3?g?1), thermal insulation (0.23?W?m?1?K?1), and thermal stability (Tonset?=?310°C), but decreased the glass transition temperature (Tg?=?260°C).  相似文献   

18.
A UV/visible spectrophotometric temperature-jump study of the inclusion of the rhodamine B zwitterion (RB) by β-cyclodextrin (βCD) to form a 1:1 complex (RB·βCD) in aqueous 1.00 mol dm?3 NaCl at pH 6.40 and 298.2 K yields:k 1=(1.3±0.2)×108 dm3 mol?1 s?1,k ?1=(2.2±0.5)×104 s?1, andK 1=(5.9±2.3)×103 dm3 mol?1 for the equilibrium: $${\text{RB + }}\beta {\text{CD}}{\text{RB}} \cdot \beta {\text{CD}} K_1 $$ Under the same conditions the dimerization of RB: $${\text{2}} {\text{RB}}({\text{RB}})_2 K_d $$ is characterized byK d =(1.8±1.0)×103 dm3 mol?1. The interaction of RB with αCD and γCD is weaker than with βCD, and is discussed in terms of the relative sizes of RB and the cyclodextrin annulus. Comparisons are made with the inclusions of other dyes by cyclodextrins.  相似文献   

19.
Abstract Laser flash photolysis and pulse radiolysis have led to the characterisation of several shortlived intermediates formed after irradiation of retinoic acid and retinyl acetate in hexane or methanol. For retinoic acid, the triplet state, wavelength maximum 440 nm, extinction coefficient 7.3 × 104 dm3 mol?1 cm?1, decay constant 6.2 × 105 s?1, is formed with a quantum yield of 0.012 for 347 nm excitation. The radical cation, absorption maximum 590 nm, extinction coefficient ~7 × 104 dm3mol?1 cm?1, is formed in a biphotonic process. The radical anion, absorption maximum 510nm in hexane, 480 nm in methanol where its extinction coefficient is 1.2 × 105 dm3mol?1 cm?1, appears to decay partially in methanol into another longer-lived neutral radical, wavelength maximum 420 nm, by loss of OH?. For retinyl acetate, the triplet state, absorption maximum 395 nm, extinction coefficient 7.9 × 104dm3mol?1 cm?1, decay constant 1.2 × 106s?1 is formed with a quantum yield of 0.025 for 347 nm excitation. Monophotonic photoelimination of OCOCH3? in methanol produces the retinylic carbenium ion, wavelength maximum 590 nm, whose decay is enhanced by ammonia, k ~ 2 × 106 dm3 mol?1 s?1 and retarded by water. The radical cation also has a wavelength maximum at 590 nm, its extinction coefficient being ~ 1.0 × 105 dm3mol1 cm?1. The long-lived transient absorption with maximum at 385 nm, extinction coefficient 1.0 × 105 dm3mol?1 cm?1, obtained from the reaction of the solvated electron with retinyl acetate in methanol may be due to either the radical anion itself or more likely the radical resulting from elimination of OCOCH3? from this anion. These results suggest that skin photosensitivity caused by retinyl acetate might be greater than that due to retinoic acid.  相似文献   

20.
In this paper, the flow amperometric enzymatic biosensor based on polished silver solid amalgam electrode for determination of sarcosine in model sample under flow injection analysis conditions is presented. The biosensor works on principle of electrochemical detection of oxygen decrease during enzymatic reaction which is directly proportional to the concentration of sarcosine in sample. The whole preparation process takes about 3 h. The RSD of repeatability of 10 consecutive measurements is 1.6 % (csarcosine=1.0×10?4 mol dm?3). Under optimal conditions the calibration dependence was linear in the range 7.5×10?6–5.0×10?4 mol dm?3 and limit of detection was 2.0×10?6 mol dm?3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号