首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 18 毫秒
1.
The aim of our work is the synthesis and characterization of colloidal core–shell particles with a zeolite core and an environmentally responsive shell. We have synthesized colloidal ZSM-5 zeolite and modified the surface with 3-(trimethoxysilyl)propyl methacrylate in order to introduce double bonds at the surface. The cross-linked polymeric shell was prepared by precipitation polymerization using the functionalized zeolite particles as seeds. We employed thermoresponsive poly(N-isopropylacrylamide) and pH-responsive poly(vinylpyridine) as the polymeric shell, respectively. The temperature- and pH-depending swelling and deswelling of the core–shell particles were characterized with dynamic light scattering techniques. Transmission electron microscopy pictures show the morphology of the synthesized particles. It is proposed that these types of bifunctional core–shell particles could be of use for controlled uptake and release applications and separation of molecules.  相似文献   

2.
Organic/inorganic hybrids were prepared by catalytic hydrolysis and subsequent polycondensation of tetra-n-butyl titanate (TnBT) in shell layers grafted on core particles. The core particles were synthesized by emulsifier-free emulsion polymerization of styrene, N-n-butyl-N-2-methacryloyloxyethyl-N,N-dimethylammonium bromide (C4DMAEMA), and 2-chloropropionyloxyethyl methacrylate using 2,2′-azobis(2-amidinopropane) dihydrochloride as an initiator. The core diameters were controlled in the range of 70–550 nm by adjusting a C4DMAEMA feed concentration. The core–shell particles were prepared by surface-initiated activator generated electron transfer–atom transfer radical polymerization of 2-(N,N-dimethylamino)ethyl methacrylate (DMAEMA). The sizes of core–shell particles were found to increase monotonically with an increase in a DMAEMA concentration. The hybrid particles were fabricated by adding TnBT into a water/ethanol dispersion of core–shell particles. The amounts of titania deposited increased in proportion to the grafted amounts of poly[2-(N,N-dimethylamino)ethyl methacrylate] on the core particles. The X-ray diffraction measurement revealed that the hollow titania particles obtained by heat treatment of hybrids have an anatase crystallographic phase.  相似文献   

3.
4.
Core–shell microgels are of increasing interest as smart carriers of catalysts, as sensors, or as building blocks for colloidal superstructures. In the context of colloidal assemblies, photonic applications are probably the most promising ones. This progress report presents and discusses the most recent results in this area focusing on the last 2–3 years, and also gives some background information. In addition, potential perspectives of this area will be outlined. © 2013 Wiley Periodicals, Inc. J. Polym. Sci., Part B: Polym. Phys. 2013, 51, 1073–1083  相似文献   

5.
We successfully prepared PNIPAM-g-P(NIPAM-co-St) (PNNS) core–shell microsphere by an emulsifier-free emulsion polymerization method. When PNNS with a core–shell structure is interacted with Eu(III), Eu(III) mainly bonds to oxygen of the carbonyl groups of PNNS, forming the novel PNNS-Eu(III) complex. It was found that the complex showed thermosensitive and fluorescent properties at one time. Especially, the maximum emission intensity of Eu(III) in the complex at 614 nm is significantly enhanced in comparison with that of pure Eu(III), demonstrating that there exists an efficient intermolecular energy transfer from the polymer ligand to Eu(III) and then the excited Eu(III) generates the enhanced fluorescence. When the weight ratio of Eu(III) and the PNNS is 8 wt%, the enhancement of the emission fluorescence intensity at 614 nm is highest.  相似文献   

6.
Environmentally sensitive polysaccharide nanoparticles (NPs) were prepared by in situ polymerization of N-isopropylacrylamide (NIPAAm) monomer in the presence of chitosan (CS) micelles. First, CS was found to develop a cationic micelle-like structure in the acetic acid solution when its concentration was increased to above the critical micelle concentration, as evidenced by fluorescence and TEM. When the NIPAAm was polymerized in the CS micelle solution by using potassium persulfate as initiator, the produced PNIPAAm with anionic chain end(s) became hydrophobic, as long as the reaction temperature was above its phase transition temperature; and therefore it would diffuse into the hydrophobic core of the CS micelles, producing CS-PNIPAAm core–shell NPs. Increasing the feeding amount of NIPAAm increased the monomer conversion and therefore the particle size; yet it decreased the surface zeta potential. Moreover, the CS-PNIPAAm NPs were sensitive to both pH value and temperature. For the study of drug release properties, doxycycline hyclate was used as a model drug and loaded into the NPs at pH 4.5 and 25 °C. The result illustrated that these NPs had a continuous drug release behavior up to 1 week, depending on the pH value and temperature. In addition, enzyme or hydrogen peroxide capable of degrading CS shell was added in the solution to facilitate the drug release.  相似文献   

7.
The design and synthesis of amphiphilic nano- to micro-sized polymeric particles with core–shell nanostructures have attracted more and more attention because of their wide applicability in modern material science and their technological importance in the areas of colloid and interface science. Many synthetic strategies have been developed for the preparation of amphiphilic core–shell particles that consist of hydrophobic polymer cores and hydrophilic polymeric shells. In this review, we focus on emulsion-based approaches and properties of particles produced. These methods are: (1) grafting to functionalized particle that produces a corona-like particle, (2) grafting from reactive seed particle that produces a brush-like particle, (3) copolymerization of reactive macro-monomer with hydrophobic monomer that produces a corona-like particle, (4) emulsion polymerization in the presence of block or comb-like copolymer containing controlled free-radical moiety that produces a multi-layered particle, and (5) redox-initiated graft polymerization of vinyl monomer from a water-soluble polymer containing amino groups that produces a hairy-like particle. Potential applications of some of these particles in drug and gene deliveries, enzyme immobilization, colloidal nanocatalyst, chemical sensing, smart coating, and thermal laser imaging will be discussed.  相似文献   

8.

Fe3O4 magnetic nanoparticles (MNPs) were prepared by co-precipitation method. The nanoparticles were silica coated using TEOS, and then modified by the polymeric layers of polypropylene glycol (PPG) and polyethylene glycol (PEG). Finally, the core-shell samples were decorated with Ag, Au, and Cu nanoparticles. The products were characterized by vibrating sample magnetometry (VSM), TGA, SEM, XRD, and FTIR methods. The antibacterial activity of the prepared samples was evaluated in inactivation of E. coli and S. aureus microorganisms, representing the Gram-negative and Gram-positive species, respectively. The effect of solid dosage, bacteria concentration and type of polymeric modifier on the antibacterial activity was investigated. TEM images of the bacteria were recorded after the treatment time and according to the observed changes in the cell wall, the mechanism of antibacterial action was discussed. The prepared nanostructures showed high antibacterial activity against both Gram-negative and Gram-positive bacteria. This was due to the leaching of metal ions which subsequently led to the lysis of bacteria. A theoretical investigation was also done by studying the interaction of loaded metals with the nucleotide components of the microorganism DNA, and the obtained results were used to explain the experimental data. Finally, based on the observed inactivation curves, we explain the antibacterial behavior of the prepared nanostructures mathematically.

  相似文献   

9.
Thermo-responsive polymeric micelles of poly (ethylene glycol)-b-poly(2-hydroxyethyl methacrylate-g-lactide)-b-poly(N-isopropylacrylamide) (PEG-P(HEMA-PLA)-PNIPAM) with core–shell–corona structure were fabricated for applications in controlled drug release. The graft copolymer of PEG-P(HEMA-PLA)-PNIPAM was self-assembled into core–shell micelles with a densely PLA core and mixed PEG/PNIPAM shells at 25 °C in aqueous media. By increasing the temperature above the lower critical solution temperature of PNIPAM, these core–shell micelles could be converted into core–shell–corona micelles because of the collapse of PNIPAM block on the PLA core as the inner shell and the soluble PEG block stretching outside as the outer corona. Anticancer drug doxorubicin (DOX) was loaded in the polymeric micelles as a model drug. Compared with polymeric micelles formed by liner PEG-b-PLA-b-PNIPAM triblock copolymer, these polymeric micelles exhibited higher loading capacity, and release of DOX from the polymeric micelles with core–shell–corona structure was well-controlled.  相似文献   

10.
11.
Magnetic alumina composite microspheres with γ-Fe 2 O 3 core/Al 2 O 3 shell structure were prepared by the oil column method. A dense silica layer was deposited on the surface of γ-Fe 2 O 3 particles (denoted as γ-Fe 2 O 3 /SiO 2 ) with a desired thickness to protect the iron oxide core against acidic or high temperature conditions. γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 particles with about 85 wt% Al 2 O 3 were obtained and showed to be suitable for practical applications as a magnetic catalyst or catalyst support due to their magnetic properties and pore structure. The products were characterized with scanning electron microscope (SEM) and transmission electron microscope (TEM), nitrogen adsorption-desorption, and vibrating sample magnetometer (VSM). The specific surface area and pore volume of the γ-Fe 2 O 3 /SiO 2 /Al 2 O 3 composite microspheres calcined at 500 ? C were 200 m 2 /g and 0.77 cm 3 /g, respectively.  相似文献   

12.
13.
《Solid State Sciences》2012,14(10):1550-1556
The thermal decomposition approach, reverse micro-emulsion system and surface modification technique had been successfully used to synthesis single magnetic core Fe3O4@Organic Layer@SiO2–NH2 complex microspheres. The magnetization of the magnetic microspheres core could be easily tuned between 28 and 56 emu/g by adjusting the amount of 2-mercaptobarbituric acid. It was found that the Organic Layer to some extent had a protective effect on avoiding Fe3O4 being oxidized into Fe2O3. Each Fe3O4@Organic Layer microsphere could be coated uniformly by about 30 nm of silica shell. The average diameter of the Fe3O4@Organic Layer@SiO2 composites was about 538 nm. The saturation magnetization of the Fe3O4@Organic Layer@SiO2 complex microspheres was 12.5% less than magnetic microspheres cores. The Fe3O4@Organic Layer@SiO2–NH2 composites possessed a huge application potentiality in specificity enriching and separating biological samples.  相似文献   

14.
Submicron-sized cationic polystyrene shell particles with active ester groups were effectively self-assembled on hydrophobic surfaces of cross-linked polystyrene (PST) particles, uncharged core particles with ca. 8.5-µm diameter in aqueous systems. The hydrophobic interactions between the shell particles and core particles play a key role in heterocoagulation. The resulting heterocoagulates were highly physically stable in water, and the morphology was controlled by several factors including the solid content of latex, self-assembling time, and electrolyte concentration. Composite polymer particles with a core–shell structure were successfully obtained from the heterocoagulates by heat treatment for 3 h at a temperature above the glass transition temperature (Tg) of the cationic polymer shell particles.  相似文献   

15.
The aim of this study is to prepare delivery vehicles of paclitaxel using low molecular weight water-soluble chitosan (LMWSC) and evaluate them as an anticancer drug delivery system. LMWSC was modified with methoxy polyethylene glycol (LMWSC-MPEG, ChitoPEG), and then it was conjugated with cholesterol (LMWSC-MPEG-Chol). Core–shell type LMWSC-MPEG-Chol nanoparticles (LMWSC-NPs) were prepared by the dialysis method, and the core–shell structure was confirmed by 1H NMR analysis. To this polymer, paclitaxel was encapsulated and core–shell type nanoparticles were prepared. The release tests indicated that release of paclitaxel from the core–shell type nanoparticles and its transport across the dialysis membrane was slower than dialysis of free paclitaxel. In a cytotoxicity study using CT26 cell, the paclitaxel-encapsulated core–shell type nanoparticles (LMWSC-NPs) showed a toxicity against tumor cells similar to paclitaxel itself. The results of a tumor inhibition test with CT26 implanted upon mouse tumor models in vivo indicated that the application of a dose of 10 mg/kg of LMWSC-NPT showed a superior survival rate, and a slower tumor growth than when paclitaxel alone was administered, although the tumor growth and survival rate were not significantly changed at a dose of 2 mg/kg. The LMWSC-NPT dose above 10 mg/kg showed a superior antitumor activity.  相似文献   

16.
The preparation of biodegradable and thermoresponsive enzyme–polymer bioconjugates with controllable enzymatic activity via reversible addition−fragmentation chain transfer (RAFT) polymerization and amidation conjugation reaction is presented. A new 2-mercaptothiazoline ester functionalized RAFT agent with intra-disulfide linkage was synthesized and used as chain transfer agent (CTA) to generate a biocompatible homopolymer, poly(ethyleneglycol) acrylate (polyPEG-A) and a thermoresponsive copolymer of poly(ethyleneglycol) acrylate with di(ethyleneglycol)ethyl ether acrylate [poly(PEG-A-co-DEG-A)]. These biodegradable and thermoresponsive polymers were then conjugated to the surface of glucose oxidase (GOx) under mild condition to afford the biodegradable and thermoresponsive enzyme–polymer conjugates. Cleavage of the polymer chains from the GOx surface obviously recovered the enzymatic activity. The thermoresponsive test of GOx-poly(PEG-A-co-DEG-A) revealed that the bioconjugate exhibited regular enzymatic activity fluctuation upon the temperature change below or above the lower critical solution temperature (LCST). The as-prepared enzyme–polymer conjugates were also characterized using 1H NMR, UV–vis spectroscopy, polyacrylamide gel electrophoresis (PAGE) and biocatalytic activity tests. These smart enzyme–polymer conjugates would envision promising applications in biotechnology and biomedicine.  相似文献   

17.
Oil-in-water (o/w) emulsions of styrene, as monomer oil in water, were achieved successfully via Pickering emulsification with laponite nanoparticles as the sole inorganic stabilizers. The formed emulsions showed excellent stability not only against droplets coalescence (before polymerization) but also against microparticles coagulation (after polymerization). Generally, the number of composite polystyrene microparticles (PS) increased and their sizes decreased with the content of solid nanoparticles used in stabilizing the precursor o/w emulsions. This is consistent with the formation of rigid layer(s) of the inorganic nanoparticles around the PS microparticles thus a better stability was achieved. The composite microparticles were characterized using various techniques such as surface charge, stability, transmission electron microscope (TEM), scanning electron microscope (SEM) and Fourier transform infra-red (FT-IR). Coating films of the prepared latexes were applied to flat glass surfaces and showed reasonable adhesion compared to PS latex particles prepared with conventional surfactants. The effect of employed conditions on the features of the resulting emulsions in terms of stability and particle size has been discussed.  相似文献   

18.
We report aluminothermic reduction enabled synthesis of hollow silicon microspheres from sand, which are further encaged in a carbon shell, resulting in hollow Si@void@C yolk-shell microspheres. The hollow Si@void@C yolk-shell microspheres exhibit superior long-term cyclability and rate capability, which lay a basis for the development of high-performance silicon anode of advanced LIBs.  相似文献   

19.
Magnetic CoNi@Au core–shell nanorods have been electrochemically synthesized, characterized and functionalized to test their inherent cytotoxicity in order to assess their potential use for biomedical applications. The initially electrodeposited CoNi nanorods have been covered with a gold layer by means of galvanic displacement to minimize the nanowires toxicity and their aggregation, and favour the functionalization. The presence of a gold layer on the nanorod surface slightly modifies the magnetic behaviour of the as-deposited nanorods, maintaining their soft-magnetic behaviour and high magnetization of saturation. The complete covering of the nanorods with the gold shell favours a good functionalization with a layer of (11-Mercaptoundecyl)hexa(ethylene glycol) molecules, in order to create a hydrophilic coating to avoid the aggregation of nanorods, keeping them in suspension and give them stability in biological media. The presence of the organic layer incorporated was detected by means of electrochemical probe experiments. A cytotoxicity test of functionalized core–shell nanorods, carried out with adherent HeLa cells, showed that cell viability was higher than 80% for amounts of nanorods up to 10 μg mL 1. These results make functionalized nanorods promising vehicles for targeted drug delivery in medicine, which gives a complementary property to the magnetic nanoparticles.  相似文献   

20.
Core–shell silica (SiO2) coated CdS nanorods (NR) and nanospheres (NS) were prepared (SiO2@CdS) by deposition of a Si–O–Si amorphous layer over the CdS surface through the hydrolysis of 3-mercaptopropyltrimethoxysilane and tetraethylorthosilicate. Nanoporous SiO2 matrix (NPSM), hollow SiO2 nanotubes (HSNT) and nanospheres (HSNS) useful for efficient adsorption and catalytic processes were prepared by chemical dissolution of CdS–NS (size: 9–10 nm) and CdS–NR (length: 116–128 nm and width: 6–11 nm) template from SiO2@CdS with 2 M HNO3. These SiO2 nanostructures were characterized by optical absorption, TEM, EDX, SAED and BET surface area analysis. TEM images revealed the fabrication of slightly distorted HSNS (size: 9–12 nm) and closed HSNT (length: 30–45 nm and diameter: 9–14 nm) of shorter dimensions than the CdS–NR template used. The BET surface area (112–134 m2 g?1) of NPSM and HSNS is found to be larger than the surface area (29–51 m2 g?1) of SiO2@CdS composites indicating hollow SiO2 morphology. Silica coated Au (SiO2@Au) composites formed by CdS dissolution from Au (2 wt%) deposited CdS–NR core-encapsulated into SiO2 shell (SiO2@Au–CdS–NR) exhibited a surface plasmon band at 550 nm and displayed high catalytic activity for 4-nitrophenol reduction by Au nanoparticle.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号