首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A simple, sensitive and selective LC-MS-MS method has been developed for the quantification of huperzine A in human plasma. Huperzine A and pseudoephedrine hydrochloride (internal standard) were isolated from human plasma by extraction with ethyl acetate, chromatographed on a C(18) column with a mobile phase consisting of 0.2% formic acid-methanol (15:85, v/v) and detected using a tandem mass spectrometer with an electrospray ionization interface. The lower limit of quantification was 0.0508 ng/mL, and the assay exhibited a linear range of 0.0508-5.08 ng/mL (r = 0.9998). The method was successfully applied to investigate the bioequivalence between two kinds of tablets (test vs reference product) in 18 healthy male Chinese volunteers. After a single 0.2 mg dose for the test and reference product, the resulting means of major pharmacokinetic parameters such as AUC(0-24), AUC(0-infinity), C(max), T(max) and t(1/2) of huperzine A were 16.35 +/- 3.42 vs 16.38 +/- 3.61 ng h/mL, 17.53 +/- 3.80 vs 17.70 +/- 3.97 ng h/mL, 2.47 +/- 0.49 vs 2.51 +/- 0.51 ng/mL, 1.3 +/- 0.4 vs 1.2 +/- 0.3 h and 5.92 +/- 0.75 vs 6.18 +/- 0.66 h, respectively, indicating that these two kinds of tablets were bioequivalent.  相似文献   

2.
A rapid, simple and specific method for estimation of anastrazole in human plasma was validated using letrozole as internal standard. The analyte and internal standard were extracted from plasma using simple solid‐phase extraction. The compound were separated on a reverse‐phase column with an isocratic mobile phase consisting of 0.1% formic acid in water and acetonitrile (12 : 88, v/v) and detected by tandem mass spectrometry in positive ion mode. The ion transitions recorded in multiple reaction monitoring mode were m/z 294.1 → 225.1 for anastrazole and m/z 286.1 → 217.1 for internal standard. Linearity in plasma was observed over the concentration range 0.3–30 ng/mL for anastrazole. The mean recovery for anastrazole was 83.7% with a lower limit of quantification of 0.3 ng/mL. The coefficient of variation of the assay was less than 6.8% and the accuracy was 96.1–102.2%. The validated method was applied to a bioequivalence study of 1 mg anastrazole tablet in healthy human volunteers. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

3.
A simple, rapid and sensitive liquid chromatography/electrospray tandem mass spectrometry (LC-MS/MS) quantitative detection method, using cefalexin as internal standard, was developed for the analysis of faropenem in human plasma and urine. After precipitation of the plasma proteins with acetonitrile, the analytes were separated on a C18 reversed-phase column with 0.1% formic acid-methanol (45:55, v/v) and detected by electrospray ionization mass spectrometry in positive multiple reaction monitoring mode. Calibration curves with good linearities (r=0.9991 for plasma sample and r=0.9993 for urine sample) were obtained in the range 5-4000 ng/mL for faropenem. The limit of detection was 5 ng/mL. Recoveries were around 90% for the extraction from human plasma, and good precision and accuracy were achieved. This method is feasible for the evaluation of pharmacokinetic profiles of faropenem in humans, and to our knowledge, it is the first time the pharmacokinetic of faropenem has been elucidated in vivo using LC-MS/MS.  相似文献   

4.
A selective, rapid and simple liquid chromatography-tandem mass spectrometry (LC-MS/MS) method is described for assay of donepezil in human plasma using escitalopram as an internal standard. Chromatographic separation was achieved on a Betabasic-C(8), 5 microm, 100 x 4.6 mm column using methanol:water:formic acid (90:9.97:0.03, v/v/v) as mobile phase. Detection of donepezil and internal standard was achieved by ESI MS/MS in positive ion mode using 380.20/91.10 and 325.13/262.00 transitions, respectively. The linearity over the concentration range of 0.15-50 ng/mL for donepezil was obtained and the lower limit of quantification was 0.15 ng/mL. For each level of quality control samples, inter-day and intra-day precisions (RSD) were < or =8.92 and 10.35% and accuracy (%RE) were < or =7.33% and 9.33%, respectively. The recovery was more than 88.50% for both donepezil and internal standard by solid-phase extraction, eliminating evaporation and reconstitution steps.  相似文献   

5.
Atrasentan (A-147627) is an endothelin antagonist receptor being developed at Abbott Laboratories for the treatment of prostate cancer. A quick and sensitive method for the determination of atrasentan in human plasma has been developed and validated using high-performance liquid chromatography coupled with electrospray ionization tandem mass spectrometry. A dual-column, single mass spectrometer system is used to provide a reliable and routine means to increase sample throughput. The analytical method involves liquid-liquid extraction and internal standard (A-166790). The plasma samples and internal standard are acidified with 0.3 M hydrochloric acid prior to being extracted into 1:1 (v/v) hexanes--methyl t-butyl ether. The organic extract was evaporated to dryness using heated nitrogen stream and reconstituted with mobile phase. Atrasentan and internal standard were separated with no interference in a Zorbax SB-C(18) analytical column with 2.1 x 50 mm, 5 microm, and a Zorbax C(8) guard column using a mobile phase consisting of 50:50 (v:v) acetonitrile--0.05 M ammonium acetate, pH 4.5, at a flow rate of 0.30 mL/min to provide 4 min chromatograms. For a 250 microL plasma sample volume, the limit of quantitation was approximately 0.3 ng/mL. The calibration was linear from 0.30 to 98.0 ng/mL (r(2) > 0.995). A significant advantage of the method is the ability to employ parallel HPLC separations with detection by a single MS/MS system to provide sensitivity and selectivity sufficient to achieve robust analytical results with a lower limit of quantitation of 0.30 ng/mL and high throughput.  相似文献   

6.
A sensitive and selective liquid chromatography-tandem mass spectrometric (LC-MS/MS) method was developed and validated for the determination of sodium cromoglycate (SCG) in human plasma after a nasal dose of 10.4 mg sodium cromoglycate nasal spray, using pravastatin sodium as the internal standard. The method was validated over a linear range of 0.300-20.0 ng/mL. SCG and I.S. were extracted from 1.0 mL of heparinized plasma by C(18) solid-phase extraction cartridges using methanol as eluting solvent. The dried residue was reconstituted with 100 microL of mobile phase, and 10 microL was injected onto the LC-MS/MS system. Chromatographic separation was achieved on a C(18) column (250 x 4.6 mm i.d., 5 microm particle size) with a mobile phase of methanol-acetonitrile-water (containing 2 mmol/L ammonium acetate; 42.5:42.5:15, v/v/v) at a flow rate of 0.4 mL/min. The analytes were detected with a triple quad LC-MS/MS using ESI with positive ionization. Ions monitored in the multiple reaction monitoring mode were m/z 469.0 (precursor ion) to m/z 245.0 (product ion) for SCG and m/z 447.2 (precursor ion) to m/z327.1 (product ion) for pravastatin sodium (internal standard) The average recovery of SCG from human plasma was 94.88% and the lower limit of quantitation was 0.3 ng/mL. Results from a 3-day validation study demonstrated excellent precision and accuracy across the calibration range of 0.3-20 ng/mL. The method was successfully applied to the pharmacokinetic study of SCG in healthy Chinese volunteers. Copyright (c) 2008 John Wiley & Sons, Ltd.  相似文献   

7.
A high‐performance liquid chromatographic assay with tandem mass spectrometric detection was developed to simultaneously quantify fluoxetine and olanzapine in human plasma. The analytes and the internal standard (IS) duloxetine were extracted from 500 μL aliquots of human plasma through solid‐phase extraction. Chromatographic separation was achieved in a run time of 4.0 min on a Hypersil Gold C18 column (50 × 4.6 mm, 5 µm) using isocratic mobile phase consisting of acetonitrile–water containing 2% formic acid (70:30, v/v), at a flow‐rate of 0.5 mL/min. Detection of analytes and internal standard was performed by electrospray ionization tandem mass spectrometry, operating in positive‐ion and multiple reaction monitoring acquisition mode. The protonated precursor to product ion transitions monitored for fluoxetine, olanzapine and IS were m/z 310.01 → 147.69, 313.15 → 256.14 and 298.1 → 153.97, respectively. The method was validated over the concentration range of 1.00–150.20 ng/mL for fluoxetine and 0.12–25.03 ng/mL for olanzapine in human plasma. The intra‐batch and inter‐batch precision (%CV) across four quality control levels was ≤6.28% for both the analytes. In conclusion, a simple and sensitive analytical method was developed and validated in human plasma. This method is suitable for measuring accurate plasma concentration in bioequivalence study and therapeutic drug monitoring as well, following combined administration. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

8.
A simple and robust method for quantification of zolpidem in human plasma has been established using liquid chromatography-electrospray ionization tandem mass spectrometry (LC-ESI MS/MS). Es-citalopram was used as an internal standard. Zolpidem and internal standard in plasma sample were extracted using solid-phase extraction cartridges (Oasis HLB, 1 cm3/30 mg). The samples were injected into a C8 reversed-phase column and the mobile phase used was acetonitrile-ammonium acetate (pH 4.6; 10 mm) (80:20, v/v) at a flow rate of 0.7 mL/min. Using MS/MS in the selected reaction-monitoring (SRM) mode, zolpidem and Es-citalopram were detected without any interference from human plasma matrix. Zolpidem produced a protonated precursor ion ([M+H]+) at m/z 308.1 and a corresponding product ion at m/z 235.1. The internal standard produced a protonated precursor ion ([M+H]+) at m/z 325.1 and a corresponding product ion at m/z 262.1. Detection of zolpidem in human plasma by the LC-ESI MS/MS method was accurate and precise with a quantification limit of 2.5 ng/mL. The proposed method was validated in the linear range 2.5-300 ng/mL. Reproducibility, recovery and stability of the method were evaluated. The method has been successfully applied to bioequivalence studies of zolpidem.  相似文献   

9.
《Analytical letters》2012,45(7):1381-1391
Abstract

A rapid, sensitive, and specific liquid chromatography‐electrospray ionization mass spectrometric (LC‐ESI‐MS) method has been developed for quantification of gliclazide in human plasma. The analyte and tolbutamide (internal standard, I.S.) were extracted from plasma samples with n‐hexane–dichloromethane (1:1, v/v) and analyzed on a C18 column. The chromatographic separation was achieved within 4.0 min by using methanol–0.5% formic acid (80:20, v/v) as mobile phase and the flow rate was 1.0 mL/min. Ion signals m/z 324.0 and 271.0 for gliclazide and internal standard were measured in the positive mode, respectively. The method was linear within the range of 2.5–2000 ng/mL. The lower limit of quantification (LLOQ) was 2.5 ng/mL. The intra‐ and inter‐day precisions were lower than 2.8% in terms of relative standard deviation (RSD). The inter‐day relative error (RE) as determined from quality control samples (QCs) ranged from ?1.93% to 1.85%. This validated method was successfully applied for the evaluation of pharmacokinetic profiles of gliclazide modified‐release tablets in 20 healthy volunteers.  相似文献   

10.
A rapid, sensitive and selective liquid chromatography-tandem spectrometry method was developed and validated for determination of paeoniflorin in rat plasma using geniposide as the internal standard. The samples were pretreated with solid-phase extraction using Extract-Clean cartridges. Separation of paeoniflorin and IS was achieved on a reversed-phase C18 column (50x4.6 mm i.d.) with a mobile phase made up of acetonitrile and 0.05% formic acid (25:75, v/v) at a flow rate of 0.5 mL/min. Detection was carried out on a triple quadrupole tandem mass spectrometer by multiple-reaction monitoring and an electrospray ionization source was employed as the ionization source. The lower limit of quantification obtained was 4 ng/mL (n=6) using 200 microL plasma with an accuracy of -3.67% (relative error) and a precision of 4.13% (relative standard deviation). A good linearity was found in the range of 4-1000 ng/mL. The intra- and inter-day relative standard deviations in the measurement of quality control samples 10, 150 and 800 ng/mL ranged from 3.73 to 4.94% and from 4.31 to 6.56%, respectively. The accuracy was from -3.93 to -1.11% in terms of relative error. The analyte and IS were stable in the battery of stability studies. This method was successfully applied to a pharmacokinetic study of paeoniflorin after a single oral administration of 53.36 mg/kg paeoniflorin to rats.  相似文献   

11.
A solid‐phase extraction–liquid chromatographic–tandem mass spectrometry method for the determination of nalbuphine concentrations in human plasma has been developed. Samples (1 mL) were extracted using a Strata™‐X solid phase extraction cartridges. Chromatographic separation of nalbuphine and naloxone (internal standard) was achieved on a Phenomenex Kinetex PFP (2.6 μm, 100 A, 100 × 2.1 mm) column using a mobile phase consisting of 0.1% formic acid, 15 mM ammonium acetate in deionized water and acetonitrile (60:40, v/v). The flow rate was 0.3 mL/min and the total run time was 2 min. Detection of the analytes was achieved using positive ion electrospray ionization via multiple reactions monitoring mode. The mass transitions were m/z 358 → 340 for nalbuphine and m/z 328 → 310 for naloxone. The assay was linear over the concentration range 0.50–500.00 ng/mL, with correlation coefficients ≥0.995. The lower limit of quantitation was set at 0.5 ng/mL plasma based on an average signal‐to‐noise ratio of 44.79. The intra‐ and inter‐day precision was less than 8.07% in terms of relative standard deviation and accuracy ranged from 94.97 to 106.29% at all quality control levels. The method was applied successfully to determine nalbuphine concentrations in human plasma samples obtained from subjects receiving intravenous administration of nalbuphine. The method is rapid, sensitive, selective and directly applicable to human pharmacokinetic studies involving nalbuphine. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

12.
《Analytical letters》2012,45(4):737-746
Abstract

A rapid, sensitive, and selective high‐performance liquid chromatography‐tandem mass spectrometric method (HPLC‐MS‐MS) for the determination of coumatetralyl in human serum using warfarin as an internal standard has been developed and validated. Coumatetralyl and the internal standard were extracted from the human serum samples by liquid‐liquid extraction with ethyl acetate, followed by separation on a XDB C18 reversed‐phase column (150 mm×2.1 mm i.d., 5 µm) using a mobile phase consisting of acetic acid‐ammonium acetate (5 mmol/L, pH=4.5)/methanol (20:80, v/v) at a constant flow rate of 0.40 mL/min. Coumatetralyl and the internal standard were ionized by negative ion pneumatically assisted electrospray and detected in the multiple‐reaction monitoring mode using precursor→product ion combinations at m/z 291→247 and 307→161, respectively. The calibration curve was linear (r2=0.9945) in the concentration range of 0.5~100.0 ng/mL, with a lower limit of quantification of 0.5 ng/mL in human serum. Intra‐ and inter‐day relative standard deviations were less than 6.3 and 11.0%, respectively. The mean extraction recovery was 87.9% for coumatetralyl and 90.1% for the internal standard. This method is found to be able to determine trace coumatetralyl in human serum and can be used for the diagnosis of poisoned human beings.  相似文献   

13.
A highly reproducible, specific and cost-effective LC-MS/MS method was developed for simultaneous estimation of eszopiclone (ESZ) with 50 μL of human plasma using paroxetine as an internal standard (IS). The API-4000 LC-MS/MS was operated under the multiple reaction-monitoring mode using the electrospray ionization technique. A simple liquid-liquid extraction process was used to extract ESZ and IS from human plasma. The total run time was 1.5 min and the elution of ESZ and IS occurred at 0.90 min; this was achieved with a mobile phase consisting of 0.1% formic acid-methanol (15:85, v/v) at a flow rate of 0.50 mL/min on a Discover C(18) (50 × 4.6 mm, 5 μm) column. The developed method was validated in human plasma with a lower limit of quantitation of 0.1 ng/mL for ESZ. A linear response function was established for the range of concentrations 0.10-120 ng/mL (r > 0.998) for ESZ. The intra- and inter-day precision values for ESZ were acceptable as per FDA guidelines. Eszopiclone was stable in the battery of stability studies, viz. bench-top, autosampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

14.
A highly sensitive, specific and simple LC-MS/MS method was developed for the simultaneous estimation of dexlansoprazole (DEX) with 50 μL of human plasma using omeprazole as an internal standard (IS). The API-4000 LC-MS/MS was operated under multiple reaction-monitoring mode using electrospray ionization. A simple liquid-liquid extraction process was used to extract DEX and IS from human plasma. The total run time was 2.00 min and the elution of DEX and IS occurred at 1.20 min. This was achieved with a mobile phase consisting of 0.2% ammonia-acetonitrile (20:80, v/v) at a flow rate of 0.50 mL/min on an X-terra RP 18 (50 × 4.6 mm, 5 μm) column. The developed method was validated in human plasma with a lower limit of quantitation of 2 ng/mL for DEX. A linear response function was established for the range of concentrations 2.00-2500.0 ng/mL (r > 0.998) for DEX. The intra- and inter-day precision values for DEX met the acceptance criteria as per FDA guidelines. DEX was stable in the battery of stability studies, viz. bench-top, auto-sampler and freeze-thaw cycles. The developed assay method was applied to an oral bioequivalence study in humans.  相似文献   

15.
A highly sensitive, rapid assay method has been developed and validated for the estimation of abiraterone (ART) in rat and human plasma with liquid chromatography coupled to tandem mass spectrometry and electrospray ionization in the positive-ion mode. The assay procedure involves extraction of ART and phenacetin (internal standard, IS) from rat and human plasma with a simple protein precipitation extraction process. Chromatographic separation was achieved using an isocratic mobile (10 mm ammonium acetate:acetonitrile, 10:90, v/v) at a flow-rate of 0.70 mL/min on an Atlantis dC(18) column maintained at 40 °C with a total run time of 3.5 min. The MS/MS ion transitions monitored were 350.3 → 156.0 for ART and 180.2 → 110.1 for IS. Method validation was performed as per FDA guidelines and the results met the acceptance criteria. The lower limit of quantitation achieved was 0.20 ng/mL and the linearity range extended from 0.20 to 201 ng/mL. The intra- and inter-day precisions were in the ranges 2.39-10.4 and 4.84-9.53% in rat plasma and 3.82-10.8 and 6.97-8.94% in human plasma.  相似文献   

16.
A simple, rapid, sensitive and specific liquid chromatography-tandem mass spectrometry method was developed and validated for quantification of tamsulosin (I), a highly selective alpha1-adrenoceptor antagonist used for the treatment of patients with symptomatic benign prostatic hyperplasia. The analyte and internal standard, mosapride (II) were extracted by liquid-liquid extraction with diethyl ether-dichloromethane (70:30, v/v) using a Glas-Col Multi-Pulse Vortexer. The chromatographic separation was performed on a reverse phase Waters symmetry C18 column with a mobile phase of 0.03% formic acid-acetonitrile (30:70, v/v). The protonated analyte was quantitated in positive ionization by multiple reaction monitoring with a mass spectrometer. The mass transitions m/z 409.1 solidus in circle 228.1 and m/z 422.3 solidus in circle 198.3 were used to measure I and II, respectively. The assay exhibited a linear dynamic range of 0.1-50.0 ng/mL for tamsulosin in human plasma. The lower limit of quantitation was 100 pg/mL with a relative standard deviation of less than 10%. Acceptable precision and accuracy were obtained for concentrations over the standard curve ranges. A run time of 2.0 min for each sample made it possible to analyze a throughput of more than 400 human plasma samples per day. The validated method has been successfully used to analyze human plasma samples for application in pharmacokinetic, bioavailability or bioequivalence studies.  相似文献   

17.
A rapid, simple, sensitive and specific LC‐MS/MS method has been developed and validated for the simultaneous estimation of atorvastatin (ATO), amlodipine (AML), ramipril (RAM) and benazepril (BEN) using nevirapine as an internal standard (IS). The API‐4000 LC‐MS/MS was operated under the multiple‐reaction monitoring mode using electrospray ionization. Analytes and IS were extracted from plasma by simple liquid–liquid extraction technique using ethyl acetate. The reconstituted samples were chromatographed on C18 column by pumping 0.1% formic acid–acetonitrile (15:85, v/v) at a flow rate of 1 mL/min. A detailed validation of the method was performed as per the FDA guidelines and the standard curves were found to be linear in the range of 0.26–210 ng/mL for ATO; 0.05–20.5 ng/mL for AML; 0.25–208 ng/mL for RAM and 0.74–607 ng/mL for BEN with mean correlation coefficient of ≥0.99 for each analyte. The intra‐day and inter‐day precision and accuracy results were well with in the acceptable limits. A run time of 2.5 min for each sample made it possible to analyze more than 400 human plasma samples per day. The developed assay method was successfully applied to a pharmacokinetic study in human male volunteers. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

18.
A rapid high‐performance liquid chromatography–tandem mass spectrometry method has been developed and validated for simultaneous measurement of venlafaxine and O‐desmethylvenlafaxine in human plasma using fluoxetine as an internal standard. In the liquid–liquid extraction method, compounds and internal standard were extracted from plasma using methyl tertiary butyl ether as an extraction solvent. The HPLC separation of the analytes was performed on a Zorbax SB‐C18, 50 × 4.6 mm, 5 µm column, using a isocratic elution program using a mobile phase consisting of HPLC‐grade methanol: 5 mm ammonium acetate (80:20 v/v) at a flow‐rate of 1.0 mL/min with a total runtime of 3.0 min. The proposed method has been validated with a linear range of 4–400 ng/mL for venlafaxine and 5–500 ng/mL for O‐desmethyl venlafaxine. The method was applied for a bio‐equivalence study of 75 mg tablets formulation in 32 Indian male healthy subjects under fasting conditions. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

19.
A fast and sensitive ultra-performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS) method was developed for the determination of lovastatin in human plasma. With simvastatin as internal standard, sample pretreatment involved one-step extraction with n-hexane-methylene dichloride-isopropanol (20:10:1, v/v/v) of 0.5 mL plasma. Chromatographic separation was carried out on an Acquity UPLC BEH C(18) column with mobile phase consisting of acetonitrile-water (containing 5 mmol/L ammonium acetate; 85:15, v/v) at a flow-rate of 0.35 mL/min. The detection was performed on a triple-quadrupole tandem mass spectrometer by multiple reaction monitoring (MRM) via electrospray ionization source with positive mode. The analysis time was shorter than 1.7 min per sample. The standard curve was linear (r2>or=0.99) over the concentration range 0.025-50.0 ng/mL with a lower limit of quantification of 0.025 ng/mL. The intra- and inter-day precision values were below 11% and the accuracy (relative error) was within 6.0% at three quality control levels. This is the first method of MS with MRM coupled to UPLC for the determination of lovastatin, which showed great advantages of high sensitivity, selectivity and high sample throughput. It was fully validated and successfully applied to the pharmacokinetic study of lovastatin tablets in healthy Chinese male volunteers after oral administration.  相似文献   

20.
A sensitive and high‐throughput LC‐MS/MS method has been developed and validated for the combined determination of esomeprazole and naproxen in human plasma with ibuprofen as internal standard. Solid‐phase extraction was used to extract both analytes and internal standard from human plasma. Chromatographic separation was achieved in 4.0 min on XBridge C18 column using acetonitrile–25 mM ammonium formate (70:30, v/v) as mobile phase. Mass detection was achieved by ESI/MS/MS in negative ion mode, monitoring at m/z 344.19 → 194.12, 229.12 → 169.05 and 205.13 → 161.07 for esomeprazole, naproxen and IS, respectively. The calibration curves were linear from 3.00 to 700.02 ng/mL for esomeprazole and 0.50 to 150.08 ng/mL for naproxen. The intra‐ and inter‐batch precision and accuracy across four quality control levels met established criteria of US Food and Drug Administration guidelines. The assay is suitable for measuring accurate esomeprazole and naproxen plasma concentrations in human bioequivalence study following combined administration. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号