首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 390 毫秒
1.
2.
3.
4.
5.
Demetallation rates of α,β,γ,δ-tetrakis(p-sulfophenyl)porphiniron(III) in hydrochloric acid–ethanol–water, perchloric acid–ethanol–water, and sulfuric acid–alcohol–water media were determined. For a given acidity value H0 the order of the rates for the three acids was HCl > H2SO4 > HClO4. This is also the order for complex formation between acid anion and iron(III). Consequently ligands as well as protons are involved in the breaking of bonds between the metal and the porphyrin leading to the formation of the activated complex. The log k values for HCl and HClO4 media were not linearly related to the Hammett acidity function as they were for sulfuric acid–ethanol–water media. The average ΔH? and ΔS?values for the HCl media were 18.4 ± 1.4 kcal/mol and ? 19 ± 3 cal K mol, respectively, in very close agreement with those for H2SO4 media despite the difference in H 0 dependence. For H2SO4–alcohol–water media the order of the rates was butanol > propanol > ethanol with little difference between isomeric alcohols.  相似文献   

6.
Extruded, injection-molded, unoriented crystallized specimens and capillary rheometer efflux strands of commercially stabilized polypropylene without nucleating agents were examined by optical microscopy and x-ray diffraction to determine the conditions for β-form crystallization as a function of the distance from the surface and of the shear rate at commercial processing conditions. Results demonstrate that at all “cooling conditions” ΔT = Tm ? Tb (defined as the melt temperature Tm minus the bath temperature Tb) effects of strain flow initiate nucleation of β-form crystals. The shear rate is demonstrated to be important for β-form crystallization. A critical average threshold value for the shear rate of approximately 3 × 102 sec?1 has to be exceeded. The β modification is mostly connected with type-III spherulites and partly to row structures, and it is observed at processing conditions in oriented structures only.  相似文献   

7.
8.
9.
10.
11.
The present paper reports the crystal structures of two short phosphonotripeptides (one in two crystal forms) containing one ΔPhe (dehydrophenylalanine) residue, namely dimethyl (3‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}propyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Abu3PO3Me2, C21H32N3O7P, (I), and diethyl (4‐{[tert‐butoxycarbonylglycyl‐α,β‐(Z)‐dehydrophenylalanyl]amino}butyl)phosphonate, Boc0–Gly1–Δ(Z)Phe2–α‐Nva3PO3Et2, as the propan‐2‐ol monosolvate 0.122‐hydrate, C24H38N3O7P·C3H8O·0.122H2O, (II), and the ethanol monosolvate 0.076‐hydrate, C24H38N3O7P·C2H6O·0.076H2O, (III). The crystals of (II) and (III) are isomorphous but differ in the type of solvent. The phosphono group is linked directly to the last Cα atom in the main chain for all three peptides. All the amino acids are trans linked in the main chains. The crystal structures exhibit no intramolecular hydrogen bonds and are stabilized by intermolecular hydrogen bonds only.  相似文献   

12.
The four α,α,α, β,β,β,-hexamethyl α-hydrogen Coα, Coβ-dicyanocobyrinates 2b, d–f , with a free b-, d-, e-, and f-propionic-acid function, respectively, were prepared by partial hydrolysis of heptamethyl Coα, Coβ-dicyanocobyrinate (cobester; 1 ) in aqueous sulfuric acid. The cobester monoacids 2b, d–f were obtained as a ca. 1:1:1:1 mixture which was separated. The monoacids were purified by chromatography and isolated in crystalline form. The position of the free propionic-acid function was determined by an extensive analysis of 2b, d–f using 2D-NMR techniques; an analysis of the C,H-coupling network topology resulted in an alternative assignment strategy for cobyrinic-acid derivatives, based on pattern recognition. Additional information on the structure of the most polar of the four hexamethyl cobyrinates, of the b-isomer 2b , was also obtained in the solid state from a single-crystal X-ray analysis. Earlier structural assignments based on 1D-NMR spectra of the corresponding regioisomeric monoamides 3b, d–f (obtained from crystalline samples of the monoacids 2b, d–f ) were confirmed by the present investigations.  相似文献   

13.
14.
15.
16.
The title solvate of the steroid 17β‐estradiol (E2) with methanol and water, C18H24O2·0.67CH4O·0.33H2O, is the first E2 derivative to contain three crystallographically independent mol­ecules in the asymmetric unit. The three steroid mol­ecules, along with two methanol mol­ecules and a water mol­ecule, create a three‐dimensional hydrogen‐bonded system. Three‐sided columns are formed, with the estradiol mol­ecules aligned lengthwise parallel to (101), and joined by solvent mol­ecules at both hydro­philic ends. The three estradiol mol­ecules differ slightly in their ring‐bowing angles, i.e. the angle between the mean plane of the A ring and that of the BCD ring; this angle ranges from 7.1 to 12.2°.  相似文献   

17.
18.
The crystal structure of α-UB2C (low temperature modification below T = 1675(25)°C) was determined from powder X-ray data (RT) and powder neutron diffraction data (at 29 K) employing the Rietveld-Young-Wiles profile analysis method. α-UB2C crystallizes in the orthorhombic space group Pmma with a = 0.60338(3), B = 0.35177(2), C = 0.41067(2) nm, V = 0.0872 nm3, Z = 2. The residuals of the neutron refinement were R1 = 0.032 and RF = 0.043. The crystal structure of α-UB2C is a new structure type where planar nonregular 63-U-metal layers alternate with planar nonmetal layers of the type (B6C2)3. Boron atoms are in a typical triangular prismatic metal surrounding with a tetrakaidekahedral coordination B[U6B2C1], whereas carbon atoms occupy the center points of rectangular bipyramids C[U4B2]. The crystal structure of α-UB2C derives from the high temperature modification β-UB2C (ThB2C-type, ), which reveals a similar stacking of slightly puckered metal layers 63, alternating with planar layers B6 · (B6C3)2. The phase transition from β-UB2C to α-UB2C is thus essentially generated by carbon diffusion within the B6 · (B6C3)2 layers to form (B6C2)3 layers.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号