首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
王乃兴 《合成化学》2001,9(4):350-351
Fullerene[60]在光的作用下可以诱导产生单线态氧(^1O2),C60H36是一个富电子化合物,在室温下,单线态氧可以氧化C60H36,使透明的C60H36溶液(甲苯和已烷作溶剂)在短时间内变混浊,结果产生氧化产物C60H36-x(x=1-18)。  相似文献   

3.
采用较新的半经验分子轨道方法Austin Model 1(简称AM1方法), 辅以Berny梯度优化方法, 对单线态氧(~1O_2)与咪唑的1,2-环加成反应,进行了理论研究。计算获得实验尚未检测到的4,5-二氧环丁烷(4,5-dioxetane)的结构, 并在反应势能面上找到单重态双自由基中间体及通过该中间体的两步反应的过渡态。通过对过渡态的结构特征、虚振动方向以及对反应过程的电荷分布情况、轨道相互作用等的分析, 说明该反应是经由单重态双自由基中间体的分步反应。两步反应的活化势垒分别为39.2 kJ·mol~(-1)和150.5 kJ·mol~(-1)。  相似文献   

4.
5.
Structure Elucidation of a Dimethylfulvene-trimer. Evidence for a [6+ 4]-Dimerization of 6, 6-Dimethylfulvene Thermal reaction of pure 6, 6-dimethylfulvene ( 1c ) at 60° gives an oligomeric mixture consisting mainly of fulvene-trimers. The structure of the main product 3c is partially elucidated by 1H-NMR. investigations at 400 MHz and definitely confirmed by X-ray analysis. The formation of 3c is explained in terms of a [6+4] dimerization, followed by a 1, 5-proton-shift and a final Diels-Alder reaction.  相似文献   

6.
A method for the stereoselective [4+2]-cycloaddition of alkenylboranes and dienes is presented. This transformation was accomplished through the introduction of a new strategy that involves the use of chiral N-protonated alkenyl oxazaborolidines as dieneophiles. The reaction leads to the formation of products that can be readily derivatized to more complex structural motifs through stereospecific transformations of the C−B bond such as oxidation and homologation. Detailed computation evaluation of the reaction has uncovered a surprising role of the counterion on stereoselectivity.  相似文献   

7.
Formation of Thietane Derivatives via Intramolecular (2+2) Cycloaddition On irradiation, the two 4-vinyl-1,3-thiazole-5(4H)-thiones 1a, b , synthesized from thiobenzoic acid and the corresponding 3-amino-2H-azirines 2a , b , undergo an intramolecular (2+2)-cycloaddition reaction of the C?S and C?C bonds to give the tricyclic thietane derivatives 3a , b .  相似文献   

8.
9.
Stereoselective reactions of singlet oxygen are of current interest. Since enantioselective photooxygenations have not been realized efficiently, auxiliary control is an attractive alternative. However, the obtained peroxides are often too labile for isolation or further transformations into enantiomerically pure products. Herein, we describe the oxidation of naphthalenes by singlet oxygen, where the face selectivity is controlled by carbohydrates for the first time. The synthesis of the precursors is easily achieved starting from naphthoquinone and a protected glucose derivative in only two steps. Photooxygenations proceed smoothly at low temperature, and we detected the corresponding endoperoxides as sole products by NMR. They are labile and can thermally react back to the parent naphthalenes and singlet oxygen. However, we could isolate and characterize two enantiomerically pure peroxides, which are sufficiently stable at room temperature. An interesting influence of substituents on the stereoselectivities of the photooxygenations has been found, ranging from 51:49 to up to 91:9 dr (diastereomeric ratio). We explain this by a hindered rotation of the carbohydrate substituents, substantiated by a combination of NOESY measurements and theoretical calculations. Finally, we could transfer the chiral information from a pure endoperoxide to an epoxide, which was isolated after cleavage of the sugar chiral auxiliary in enantiomerically pure form.  相似文献   

10.
Conclusions Terminal and internal fluoroolefins and polyfluoro-1-alkenylsulfonyl fluorides as well as perfluoro-3-aza-2-pentene react with furan to give [2+4]-cycloadducts. Perfluoroazapropene and 1-cyanotetrafluoro-2-azopropene do not undergo this cycloaddition reaction.Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 4, pp.897–900, April, 1988.  相似文献   

11.
The reaction of dichlorides of 3,3-disubstituted allenylphosphonic acids with chlorosulphonylisocyanate involves (2+2)-cycloaddition of the reagent at the C2-C3 double bond and results in the formation of 1-chlorosulphonyl-3-dichlorophosphonylmethyliden-2-azetidinones, until now inknown in the literature.  相似文献   

12.
13.
14.
A number of 1,4-dihydropyridazines and pyridazines were prepared by the Diels-Alder reaction with an inverse electron demand from cyclic heterodiene systems, 3,6-bis(3,5-dimethyl-4-R-pyrazol-1-yl)-1,2,4,5-tetrazines, and some enamines as well as from 4-vinylpyridine, butyl vinyl ether, phenylacetylene, and acrylamide. The reaction of 3,6-bis(3,5-dimethylpyrazol-1-yl)-1,2,4,5-tetrazine with styrene afforded 4,5-dihydropyridazine, which was readily oxidized by atmospheric oxygen to form the corresponding pyridazine. Electron-withdrawing substituents (Br or Cl) in the pyrazole rings accelerate [4+2]-cycloaddition. When heated, 1,4-dihydropyridazines, which were synthesized from tetrazines and enamines, eliminated amine to give pyridazines. The reactivities of tetrazines were evaluated by quantum-chemical methods. Translated fromIzvestiya Akademii Nauk. Seriya Khimicheskaya, No. 2, pp. 354–360, February, 2000.  相似文献   

15.
16.
17.
18.
Methyl trifluoropyruvate trifluoroacetylimine (I) reacts regioselectively with olefins to form dihydrooxazines (II)-(VII). In its reactions with 1,3-dienes, too, compound (I) exhibits properties of a 1,3-heterodiene rather than a dienophile. Acid hydrolysis of the synthesized oxazines results in their conversion to substituted -amino--trifluoromethyltetrahydrofuran-2-ones (XII)-(XVI).Translated from Izvestiya Akademii Nauk SSSR, Seriya Khimicheskaya, No. 5, pp. 1130–1133, May, 1991.  相似文献   

19.
Cationic complexes of the type [M(CO)S(PPh(3))(2)](+) (M = Ir, Rh; S = CH(3)CN) react with singlet oxygen to form the corresponding peroxo complexes [M(CO)S(PPh(3))(2)(O(2))](+). The solvent molecule remains coordinated to the metal in the oxygen adducts. The novel cationic iridium-peroxo complex is stable at room temperature, while the rhodium-peroxo complex is only stable below 0 degrees C. Rate constants for physical and chemical interaction of the complexes with singlet oxygen are somewhat smaller than those for related neutral complexes. Upon addition of alkenes (tetramethylethylene or 1-octene) to the peroxo complexes, neither oxidation of the olefins nor substitution of the acetonitrile ligand was observed. 1-Octene was isomerized to give mostly 2- and 3-octene by the cationic rhodium(I) complex. A cationic iridium complex which already possesses a coordinated diene ligand ([Ir(COD)(PPh(3))(2)](+)) did not react with or quench singlet oxygen.  相似文献   

20.
Tetraphenylporphin-photosensitized oxygenations of furan (19), 2-methylfuran (26), 2-ethylfuran (39), furfurylalcohol (24), 2-acetylfuran (40), 2-methoxyfuran (42), 2,5-dimethylfuran (30), furfural (25) and 5-methylfurfural (41) in non-polar aprotic solvents yield the corresponding monomeric unsaturated secondary ozonides due to a (4+2)-cycloaddition of singlet oxygen to these furans. With the exception of the ozonide derived from 25, the ozonides were isolated and characterized (1H- and 13C-NMR spectra, etc.). In non-polar aprotic solvents, the ozonides derived from 19, 26 and 39 undergo thermal rearrangements to the corresponding cis-diepoxides and epoxylactones. Ozonide 31, derived from 30, however, dimerizes, only above about 60° is a cis-diepoxide formed from either 31 or its dimer. Rose bengal-photosensitized oxygenations of the furans in alcohols (MeOH, EtOH, i-PrOH) also produce the corresponding ozonides as the primary products of (4+2)-cycloadditions of singlet oxygen to these furans. However, reactions of the alcohols with the ozonides are too fast to allow the ozonides to be isolated. Instead, the same products are obtained as are isolated from reactions carried out by dissolving the ozonides in the alcohols. Depending on the structure of the ozonide, three pathways are available to ozonide/alcohol (ROH) interactions:(1) addition of ROH to yield alkoxy hydroperoxides; one out of several possible isomers is formed in a completely stereoselective and regiospecific reaction; (2) elimination of a bridgehead proton by ROH as a base, as observed with the ozonide derived from 19 to give hydroxy butenolide (78) in yields between 20 and 60%, and (3) ROH-attack on a carbonyl side-chain under elimination of the corresponding alkyl ester, as observed with furfural photooxygenation which yielded hydroxy butenolide (78) in high yields (95%). Interaction of ozonide 31 with tert.-butyl alcohol (t-BuOH) yields quantitatively cis-3-oxo-1-butenylacetate (81) by a Baeyer-Villiger-type rearrangement with vinyl group migration Hydrogenbonding between the alcohol and the peroxy group of the ozonides assist the heterolysis of the C—O bonds in the ozonides; the most stabilized cation develops. Front-attack of ROH on this cation explains the stereoselectivity as well as the regiospecificity of the alkoxy hydroperoxide formation; with a bulky alcohol like t-BuOH, ROH-attack on the cation is sterically hindered thus allowing a rearrangement to occur. 1,3-Dipolar cycloaddition of p-nitrophenyl azide to ozonide 31 proceeds stereoselectively to one of the isomers 87a/87b. Finally, kinetic results of furan photooxygenation in methanol show the following order of furan-reactivity towards singlet oxygen: 30 > 42 > 26 > 19 > 41 > 25, with absolute rate constants ranging from 1.8 × 108 (with 30) to 8.4 × 1O4 M-1P-1 (with 25).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号