首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
We report on a modified glassy carbon electrode (GCE) for sensing hydrogen peroxide (H2O2). It was constructed by consecutive electrochemical deposition of poly(anthranilic acid) and poly(diphenylamine sulfonate) on the GCE, followed by the deposition of copper oxide (CuO). The morphology and electrochemistry of the modified electrode was characterized by atomic force microscopy, X-ray diffraction, cyclic voltammetry, and electrochemical impedance spectroscopy. The catalytic performance of the sensor was studied with the use of differential pulse voltammetry under optimized conditions. This sensor displayed significantly better electrocatalytic activity for the reduction of H2O2 in comparison to a GCE without or with modification with CuO or polymer films alone. The response to H2O2 is linear in the range between 0.005 to ~11 mM, and the detection limit is 0.18 μM (at an S/N of 3).
A new bio-mimetic sensor, CuO/PANA@PSDS/GCE, was prepared, it exhibited a better electrocatalytic activity toward the reduction of the H2O2 compared with that of the CuO/GCE, PANA@PSDS/GCE, and GCE. Its increased catalytic response was due to the polyaniline doped (PANA@PSDS) film, which enlarges the specific surface area of the electrode, and increases the loading of the CuO nano-particles.  相似文献   

2.
Lu Lu  Xirong Huang 《Mikrochimica acta》2011,175(1-2):151-157
We describe a facile electrochemical route for the synthesis of CuO flower-like microspheres (CuO FMs) by anodic dissolution of bulk Cu in sodium hydroxide solution at room temperature and without heating. Scanning electron microscopy and X-ray diffraction revealed that the CuO FMs are phase-pure monoclinic crystallites and comprised of CuO nanoflakes. The concentration of NaOH has a large effect on the size of the CuO FMs. The possible formation mechanism is discussed. The CuO FMs are electrocatalytically active towards the oxidation of H2O2, and this has resulted in a sensor for H2O2. To our knowledge, this is the simplest way to obtain clean CuO FMs.
Figure
A facile electrochemical route, which is carried out at room temperature (25?°C), is introduced for the fast fabrication of CuO flower-like microspheres (CuO FMs). The CuO FMs modified glassy carbon electrode exhibits good electrocatalytic activity towards the oxidation of H2O2.  相似文献   

3.
We have prepared a graphene-based hybrid nanomaterial by electrochemical deposition of cobalt oxide nanoparticles (CoOxNPs) on the surface of electrochemically reduced graphene oxide deposited on a glassy carbon electrode (GCE). Scanning electron microscopy and cyclic voltammetry were used to characterize the immobilized nanoparticles. Electrochemical determination of H2O2 is demonstrated with the modified GCE at pH 7. Compared to GCEs modified with CoOxNPs or graphene sheets only, the new electrode displays larger oxidative current response to H2O2, probably due to the synergistic effects between the graphene sheets and the CoOxNPs. The sensor responds to H2O2 with a sensitivity of 148.6 μA mM?1 cm?2 and a linear response range from 5 μM to 1 mM. The detection limit is 0.2 μM at a signal to noise ratio (SNR) of three. The method was successfully applied to the determination of H2O2 in hydrogen peroxide samples.
Figure
A highly sensitive H2O2 sensor using a glassy carbon electrode modified with cobalt oxide nanoparticles/electrochemical reduced graphene oxide (CoOxNPs/ERGO) hybrids is presented.  相似文献   

4.
We have developed a simple and efficient method for the enhanced loading of silver nanoparticles onto carbon nanospheres, and how this method can be used to design an electrochemical sensor for hydrogen peroxide (HP). A glassy carbon electrode was modified with hemoglobin, carbon nanospheres, and by enhanced loading of silver nanoparticles onto the carbon nanospheres via spontaneous polymerization of dopamine. The hemoglobin exhibits a remarkable electrocatalytic activity for the reduction of HP. The electrochemical response to HP is linear range in the 1.0–147.0?μM concentration range, with a detection limit of 0.3?μM at a signal-to-noise ratio of 3.
Figure
A simple and efficient method has developed for enhanced loading of silver nanoparticles onto carbon nanospheres via polydopamine (AgNP-Pdop@CNPs). The direct chemistry of hemoglobin has been achieved at the AgNP-Pdop@CNPs modified glassy carbon electrode and the modified electrode exhibits a remarkable electrocatalytic activity for the reduction of hydrogen peroxide. The electrochemical response to H2O2 shows a linear range of 1.0–147.0?μM with a calculated detection limit of 0.3?μM at a signal-to-noise ratio of 3  相似文献   

5.
A glassy carbon electrode was modified with PdO-NiO composite nanofibers (PdO-NiO-NFs) and applied to the electrocatalytic reduction of hydrogen peroxide (H2O2). The PdO-NiO-NFs were synthesized by electrospinning and subsequent thermal treatment, and then characterized by scanning electron microscopy, energy dispersive X-ray spectroscopy, X-ray diffraction, and X-ray photoelectron spectroscopy. Factors such as the composition and fraction of nanofibers, and of the applied potential were also studied. The sensor exhibits high sensitivity for H2O2 (583.43 μA?·?mM?1?·?cm?2), a wide linear range (from 5.0 μM to 19 mM), a low detection limit (2.94 μM at an SNR of 3), good long term stability, and is resistant to fouling.
Figure
A glassy carbon electrode was modified with PdO-NiO composite nanofibers which were synthesized by electrospinning and subsequent thermal treatment. The sensor exhibited a wide linear range, high sensitivity, good stability and selectivity for the detection of hydrogen peroxide  相似文献   

6.
We have prepared a sol–gel that incorporates Prussian Blue (PB) as a redox mediator. It is shown that the PB in the pores of the sol–gel retains its electrochemical activity and is protected from degradation at acidic and neutral pH values. TEM and EDX studies revealed the PB nanoparticles to possess a cubic crystal structure and to be well entrapped and uniformly dispersed in the pores of the matrix. The electrocatalytic activity of the materials toward hydrogen peroxide (H2O2) was studied by cyclic voltammetry and amperometry. The modified electrode displays good sensitivity for the electrocatalytic reduction of H2O2 both in acidic (pH 1.4) and neutral media. The sensor has a dynamic range from 3 to 210 μM of H2O2, and the detection limit is 0.6 μM (at an SNR of 3).
Figure
TEM micrograph of the Sol-gel–PB composite showing a large quantity of crystalline cubic nanoparticles uniformly distributed in the sol-gel matrix and electrocatalytic response of the Sol-gel–PB electrode for hydrogen peroxide.  相似文献   

7.
We have studied the trans-membrane electron transfer in human red blood cells (RBCs) immobilized in a chitosan film on a glassy carbon electrode (GCE). Electron transfer results from the presence of hemoglobin (Hb) in the RBCs. The electron transfer rate (k s) of Hb in RBCs is 0.42 s?1, and <1.13 s?1 for Hb directly immobilized in the chitosan film. Only Hb molecules in RBCs that are closest to the plasma membrane and the surface of the electrode can undergo electron transfer to the electrode. The immobilized RBCs displayed sensitive electrocatalytic response to oxygen and hydrogen peroxide. It is believed that this cellular biosensor is of potential significance in studies on the physiological status of RBCs based on observing their electron transfer on the modified electrode.
The transmembrane electron transfer rate of Hb in RBCs is slower than hemoglobin molecules directly immobilized on the chitosan film. Only those hemoglobin in RBCs closest to the plasma membrane and electrode could exchange electrons with the electrode. The immobilized RBCs showed sensitive electrocatalytic response to O2 and H2O2.  相似文献   

8.
9.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

10.
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode (GCE). The electron mediator carboxyferrocene was also immobilized on the surface of the GCE. UV?Cvis spectra, Fourier transform IR spectra, scanning electron microscopy, and electrochemical impedance spectra were acquired to characterize the biosensor. The experimental conditions were studied and optimized. The biosensor responds linearly to H2O2 in the range from 1.0?×?10?5 to 2.0?×?10?3?M and with a detection limit of 2.0?×?10?6?M (at S/N?=?3).
Figure
A biosensor for hydrogen peroxide was constructed by immobilizing horseradish peroxidase on chitosan-wrapped NiFe2O4 nanoparticles on a glassy carbon electrode.  相似文献   

11.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

12.
We report on an amperometric biosensor for hydrogen peroxide. It is obtained via layer-by-layer assembly of ordered mesoporous carbon nanospheres and poly(diallyldimethylammonium) on the surface of an indium tin oxide (ITO) glass electrode and subsequent adsorption of cytochrome c. UV–vis absorption spectroscopy was applied to characterize the process of forming the assembled layers. Cyclic voltammetry revealed a direct and quasi-reversible electron transfer between cytochrome c and the surface of the modified ITO electrode. The surface-controlled electron transfer has an apparent heterogeneous electron-transfer rate constant (k s ) of 5.9?±?0.2?s?1 in case of the 5-layer electrode. The biosensor displays good electrocatalytic response to the reduction of H2O2, and the amperometric signal increase steadily with the concentration of H2O2 in the range from 5?μM to 1.5?mM. The detection limit is 1?μM at pH 7.4. The apparent Michaelis-Menten constant (K m ) of the sensor is 0.53?mM. We assume that the observation of a direct electron transfer of cytochrome c on mesoporous carbon nanospheres may form the basis for a feasible approach for durable and reliable detection of H2O2.
Figure
An amperometric biosensor for hydrogen peroxide has been fabricated via layer-by-layer assembly of mesoporous carbon nanospheres and polyelectrolyte on ITO electrode surface for the adsorption of cytochrome c. The direct electrochemistry and electrocatalytic activity of cytochrome c was achieved on the multilayer-assembled electrode, indicating a good affinity and biocompatibility of mesoporous carbon nanospheres for cytochrome c.  相似文献   

13.
We describe a glassy carbon electrode (GCE) modified with a film composed of Nafion and TiO2-graphene (TiO2-GR) nanocomposite, and its voltammetric response to the amino acids L-tryptophane (Trp) and L-tyrosine (Tyr). The incorporation of TiO2 nanoparticles with graphene significantly improves the electrocatalytic activity and voltammetric response compared to electrodes modified with Nafion/graphene only. The Nafion/TiO2-GR modified electrode was used to determine Trp and Tyr with detection limits of 0.7 and 2.3 μM, and a sensitivity of 75.9 and 22.8 μA mM?1 for Trp and Tyr, respectively.
Figure
The electrochemical sensor based on Nafion/TiO2-GR composite film modified GCE was presented. The integration of TiO2 nanoparticles with graphene provides an efficient microenvironment to promote the electrochemical reaction of amino acids Trp and Tyr. The fabricated electrochemical sensor exhibits favorable analytical performance for Trp and Tyr, with high sensitivity, low detection limit and good reproducibility.  相似文献   

14.
Platinum nanoparticles were electrodeposited onto a film of dihexadecyl hydrogen phosphate deposited on a glassy carbon electrode (GCE) and modified with dispersed acetylene black. Scanning electron microscopy and electrochemical impedance spectroscopy revealed that this nanocomposite has a uniform nanostructure and a large surface area that enables fast electron-transfer kinetics. The modified GCE showed high electrocatalytic activity for the oxidation of nitric oxide (NO). Under optimal conditions, the oxidation peak current of nitric oxide is linearly related to the concentration of NO in the concentration range between 0.18 and 120?μM, and the detection limit is as low as 50?nM (at an S/N of 3). The modified electrode was successfully applied to sensing of NO as released from rat liver.
Figure
Acetylene black (AB) was dispersed with dihexadecyl hydrogen phosphate (DHP) and modified on the surface of glassy carbon electrode (GCE) to fabricate AB/GCE, after activating in NaOH solution, the AB film became more porous and loosened, then through electrodepositing Pt nanoparticles (PtNPs) on the activated AB film, PtNP/AB/GCE was obtained, which was denoted as NO electrochemical sensor.  相似文献   

15.
Graphene was prepared by electrochemical reduction of exfoliated graphite oxide at cathodic potentials, and used to fabricate a graphene-modified glassy carbon electrode (GCE) which was applied in a sensor for highly sensitive and selective voltammetric determination of hydroquinone (HQ). Compared to a bare (conventional) GCE, the redox peak current for HQ in pH 5.7 acetate buffer solution is significantly increased, indicating that graphene possesses electrocatalytic activity towards HQ. In addition, the peak-to-peak separation is significantly improved. The modified electrode enables sensing of HQ without interference by catechol or resorcinol. Under optimal conditions, the sensor exhibits excellent performance for detecting HQ with a detection limit of 0.8?μM, a reproducibility of 2.5% (expressed as the RSD), and a recoveries from 98.4 to 101.2%.
Figure
Graphene based glassy carbon electrode was used to determine hydroquinone in the simultaneous presence of it isomers of catechol (CC) and resorcinol (RC). The desired sensitivity and selectivity is attributed to the good conductivity and excellent electrocatalytic ability of graphene.  相似文献   

16.
We report on the sensitive determination of glucose using a glassy carbon electrode modified with CuO nanowires and a Nafion film. The structure and morphology of CuO nanowires were established by scanning electron microscopy and X-ray diffraction. The electrochemical performance of the modified electrode was investigated by cyclic voltammetry and chronoamperometry. Compared to a bare glassy carbon electrode, a substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new glucose sensor displays two useful linear ranges of response towards glucose, is not affected by commonly interfering species, and displays a detection limit as small as 45?nM. The response time is <2?s towards 0.5?mM of glucose. Additional features include high electrocatalytic activity, high sensitivity, excellent selectivity, and good stability.
We present an enzyme-free glucose sensor using a glassy carbon electrode modified with CuO wires and a Nafion film. A substantial increase in efficiency of the electrocatalytic oxidation of glucose can be observed. The new sensor displays two useful linear ranges of response towards glucose and displays a detection limit as small as 45?nM. The response time is <2?s towards 0.5?mM of glucose.  相似文献   

17.
A new approach is described for the photoelectrocatalytic oxidation of Reduced ß-Nicotinamide Adenine Dinucleotide (NADH). It is based on a glassy carbon electrode (GCE) modified with a film of poly-Neutral Red (poly-NR) that is obtained by electropolymerization. Electrochemical measurements revealed that the modified electrode displays electrocatalytic and photo-electrocatalytic activity towards oxidation of NADH. If irradiated with a 250-W halogen lamp, the electrode yields a strongly increased electrocatalytic current compared to the current without irradiation. Amperometric and photo-amperometric detection of NADH was performed at +150 mV vs. Ag/AgCl/KClsat and the currents obtained are linearly related to the concentration of NADH. Linear calibration plots are obtained in the concentration range from 1.0 μM to 1.0 mM for both methods. However, the slope of the current-NADH concentration curve of the photo-electrocatalytic procedure was 2-times better than that obtained without irradiation.
Figure
A poly-Neutral Red modified glassy carbon electrode (poly-NR/GCE) was prepared by electropolymerization process. This modified electrode displays electrocatalytic and also photoelectrocatalytic activity towards oxidation of NADH. Compared with electrocatalytic oxidation of NADH, the current response was increased about 2.0 times in the photoelectrocatalytic oxidation process.  相似文献   

18.
We have constructed a novel electrochemiluminescence (ECL) platform by functionalizing a poly(amidoamine) dendrimer (PAAD) with titanate nanotubes (TiNTs). The PAAD has an open spherical structure that possesses a high density of active groups and thus favors mass transport, while the TiNTs possess excellent electronic conductivity and thus can promote electron transfer on the surface of a glassy carbon electrode (GCE). A study on the intensity and stability of the ECL of luminol on the modified GCE revealed a substantial improvement compared to that of a bare GCE. The effects of the concentration of TiNTs, the pH value of the solution, and of electrochemical parameters on the intensity of the ECL of luminol were studied and resulted in a sensitive ECL sensor for hydrogen peroxide (H2O2) that works in the concentration range of 1 nM to 0.9 μM. The scavenging effect of superoxide dismutase (SOD) on the H2O2 electrode ECL was then exploited to design a biosensor for the determination of SOD in concentrations between 50 and 500 nM.
Figure
The reaction mechanism schematic diagram of luminol ECL on the PAAD/TiNTs modified eledtrode.  相似文献   

19.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

20.
Nanocomposites composed of cuprous oxide (Cu2O) and graphene were synthesized via reduction of copper(II) in ethylene glycol. This material possesses the specific features of both Cu2O and graphene. Its morphology was characterized by X-ray diffraction, transmission electron microscopy, scanning electron microscopy, and X-ray photoelectron spectroscopy. Cyclic voltammetry was used to evaluate the electrochemical response of a glass carbon electrode (GCE) modified with the nanocomposite towards dopamine (DA). Compared to the bare GCE, the Cu2O nanoparticles modified electrode and the graphene modified electrode, the nanocomposites modified electrode displays high electrocatalytic activity in giving an oxidation peak current that is proportional to the concentration of DA in the range from 0.1 to 10???M,with a detection limit of 10?nM (S/N?=?3). The modified electrode shows excellent selectivity and sensitivity even in the presence of high concentration of uric acid and can be applied to determine DA in real samples with satisfactory results.
Figure
Cu2O/Graphene nanocomposites were successfully prepared, Cu2O particles were uniformly distributed on transparent graphene and no particles scattered out of the supports. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear region, excellent selectivity and sensitivity to DA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号