首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
We describe a glassy carbon electrode (GCE) modified with a film composed of Nafion and TiO2-graphene (TiO2-GR) nanocomposite, and its voltammetric response to the amino acids L-tryptophane (Trp) and L-tyrosine (Tyr). The incorporation of TiO2 nanoparticles with graphene significantly improves the electrocatalytic activity and voltammetric response compared to electrodes modified with Nafion/graphene only. The Nafion/TiO2-GR modified electrode was used to determine Trp and Tyr with detection limits of 0.7 and 2.3 μM, and a sensitivity of 75.9 and 22.8 μA mM?1 for Trp and Tyr, respectively.
Figure
The electrochemical sensor based on Nafion/TiO2-GR composite film modified GCE was presented. The integration of TiO2 nanoparticles with graphene provides an efficient microenvironment to promote the electrochemical reaction of amino acids Trp and Tyr. The fabricated electrochemical sensor exhibits favorable analytical performance for Trp and Tyr, with high sensitivity, low detection limit and good reproducibility.  相似文献   

2.
We report on a novel electrochemical method for the sensitive determination of trace zirconium (Zr) at a glassy carbon electrode modified with a film of acetylene black containing dihexadecyl hydrogen phosphate and in the presence of alizarin violet (AV). The method is based on the preconcentration of the Zr(IV)-AV complex at a potential of ?200?mV (vs. SCE). The adsorbed complex is then oxidized, producing a response with a peak potential of 526?mV. Compared to the poor electrochemical signal at the unmodified GCE, the electrochemical response of Zr(IV)-AV complex is greatly improved, as confirmed by the significant increase in peak current. The effects of experimental conditions on the oxidation current were studied and a calibration plot established. The oxidation current is linearly related to the Zr(IV) concentration in the 8.0?pM to 10?nM concentration range (cAV?=?0.2???M) and 10?nM ~0.6???M (cAV?=?2.0???M), and the detection limit (S/N?=?3) is as low as 4.0?pM for a 3-min accumulation time. The method was successfully employed to the determination of zirconium in standard ore samples.
Figure
A glassy carbon electrode modified with acetylene black-dihexadecyl hydrogen phosphate composite film was used as a novel voltammetric sensor for zirconium(Zr) determination. The stripping peak current at 526?mV exhibits good linearity with concentration of Zr in the range of 8.0?pM to to 0.6???M.  相似文献   

3.
We describe a simple, green and controllable approach for electrochemical synthesis of a nanocomposite made up from electrochemically reduced graphene oxide (ERGO) and gold nanoparticles. This material possesses the specific features of both gold nanoparticles and graphene. Its morphology was characterized by scanning electron microscopy which reveals a homogeneous distribution of gold nanoparticles on the graphene sheets. Cyclic voltammetry was used to evaluate the electrochemical properties of this nanocomposite towards dopamine by modification of it on surface of glassy carbon electrode (GCE). Compared to the bare GCE, the electrode modified with gold nanoparticles, and the electrode modified with ERGO, the one modified with the nanocomposite displays better electrocatalytic activity. Its oxidation peak current is linearly proportional to the concentration of dopamine (DA) in the range from 0.1 to 10?μM, with a detection limit of 0.04?μM (at S/N?=?3). The modified electrode also displays good storage stability, reproducibility, and selectivity.
Figure
Electrochemical reduced graphene oxide (ERGO) before and after electrochemical deposition of Au nanoparticles. Au nanoparticles with diameters of about 40–50?nm integrate uniformly with the ERGO. Electrochemical experiment results indicate that the nanocomposites modified electrode displays a wide linear range, excellent selectivity and sensitivity to DA.  相似文献   

4.
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of acridine red followed by drop-coating of graphene. The morphology was characterized by scanning electron microscopy. Uric acid (UA) is effectively accumulated on the surface of the modified electrode and generates a sensitive anodic peak in solutions of pH 6.5. Differential pulse voltammetry was used to evaluate the electrochemical response of the modified GCE to UA. Compared to the bare GCE, the GCE modified with acridine red, and to the graphene modified electrode, the new GCE displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of UA in the range from 0.8 to 150?μM, with a detection limit of 0.3?μM (at an S/N of 3). The modified electrode displays excellent selectivity, sensitivity, and a wide linear range. It has been applied to the determination of UA in real samples with satisfactory results.
Figure
The surface of a glassy carbon electrode was modified by electropolymerization of acridine red onto its surface and then covering it with graphene dropped. The graphene-poly(acridine red) modified electrode displays high electrochemical activity in giving an oxidation peak current that is proportional to the concentration of uric acid in a certain range.  相似文献   

5.
We report on a glassy carbon electrode modified with carbon-coated nickel nanoparticles (C-Ni/GCE) that can be used to study the electrochemical properties of rutin and its interaction with bovine serum albumin (BSA) via cyclic voltammetry and differential pulse voltammetry. The effects of pH value, accumulation potential, accumulation time and reaction time were optimized. A pair of reversible peaks is found in the potential range of 0 to around 0.6 V at pH?5.0. Two linear response ranges (with different slopes) are found, one in the 2 to 210 nM concentration range, the other between 0.21 and 1.72 μM. The detection limit is as low as 0.6 nM. On addition of BSA to the rutin solution, a decrease of the current is observed that is proportional to the concentration of BSA. The binding constant and stoichiometric ratio were calculated.
Figure
1. Preparation of carbon-coated nickel nanoparticles modified glassy carbon electrode (C-Ni/GCE). 2. C-Ni/GCE improves the electrochemical redox of rutin. 3. The prepared electrode determines rutin with high sensitivity and selectivity. 4. The developed method can determine rutin and its interaction with bovine serum albumin.  相似文献   

6.
Qi Wang  Yanbin Yun 《Mikrochimica acta》2012,177(3-4):411-418
We have investigated the oxidative electrochemistry of nitrite on glassy carbon electrodes modified with cobalt nanoparticles, poly(3,4-ethylenedioxythiophene) (PEDOT), and graphene. The modified electrode was characterized by cyclic voltammetry, electrochemical impedance spectroscopy, and scanning electron microscopy. The results suggest that this new type of electrode combines the advantages of PEDOT-graphene films and cobalt nanoparticles and exhibits excellent electrocatalytic activity towards the oxidation of nitrite. There is a linear relationship between the peak current and the nitrite concentration in the range from 0.5?μM to 240?μM, and the detection limit is 0.15?μM. The modified electrodes also enable the determination of nitrite at low potentials where the noise level and interferences by other electro-oxidizable compounds are weak.
Figure
The present work describes the design of a Co NPs-PEDOT-GE nanocomposite- modified GCE and its electrocatalytic properties toward the oxidation of nitrite. Compared with the Co NPs-GE/GCE (b) or PEDOT-GE/GCE (c), the as-prepared Co NPs-PEDOT-GE/GCE (d) exhibits remarkably enhanced electrocatalytic activity towards nitrite  相似文献   

7.
A differential pulse voltammetric method was developed for the simultaneous determination of paracetamol, 4-aminophenol and dopamine at pH 7.0 using a glassy carbon electrode (GCE) coated with gold nanoparticles (AuNPs) and a layered double hydroxide sodium modified with dodecyl sulfate (SDS-LDH). The modified electrode displays excellent redox activity towards paracetamol, and the redox current is increased (and the corresponding over-potential decreased) compared to those of the bare GCE, the AuNPs-modified GCE, and the SDS-LDH-modified GCE. The modified electrode enables the determination of paracetamol in the concentration range from 0.5 to 400???M, with a detection limit of 0.13???M (at an S/N of 3). The sensor was successfully applied to the stimultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively, in pharmaceutical tablets and in spiked human serum samples.
Figure
1. Gold nanoparticles and organophillic layered double hydroxide modified glassy carbon electrode was fabricated. 2. The modified electrode displayed excellent redox activity towards paracetamol. 3. This electrode was successfully applied to the simultaneous determination of paracetamol and dopamine, and of paracetamol and 4-aminophenol, respectively  相似文献   

8.
A glassy carbon electrode (GCE) was modified with nickel(II) hydroxide nanoparticles and a film of molybdenum sulfide. The nanocomposite was prepared by two-step electrodeposition. Scanning electron microscopy reveals that the nanoparticles are uniformly deposited on the film. Cyclic voltammetry and chronoamperometry indicate that this modified GCE displays a remarkable electrocatalytic activity towards nonenzymatic oxidation of glucose. Response is linear in the 10–1,300 μM concentration range (R 2 ?=?0.9987), the detection limit is very low (5.8 μM), response is rapid (< 2 s), and selectivity over ascorbic acid, dopamine, uric acid, fructose and galactose is very good.
Figure
An efficient nonenzymatic glucose sensor based on Ni(OH)2/MoSx nanocomposite modified glassy carbon electrode has been fabricated via a two-step electrodeposition approach. The resulting nonenzymatic sensor exhibits excellent properties toward glucose detection, such as low detection limit, fast response and noticeable selectivity.  相似文献   

9.
We report a simple method for the direct and quantitative determination of L-tryptophan (Trp) and L-tyrosine (Tyr) using a glassy carbon electrode (GCE) modified with single-walled carbon nanohorns (SWCNHs). The SWCNH modified GCE exhibits high electrocatalytic activity towards the oxidation of both Trp and Tyr. It shows a linear response to Trp between 0.5 and 50 μM and to Tyr between 2 and 30 μM. The detection limits for Trp and Tyr are 50 nM and 400 nM, respectively. In addition, the modified GCE displays good selectivity and good sensitivity, thus making it suitable for the determination of Trp and Tyr in spiked serum samples.
Figure
The electrochemical sensor based on single-walled carbon nanohorns modified glassy carbon electrode was presented. The fabricated electrochemical sensor exhibits favorable analytical performance for L-tryptophan and L-tyrosine with high sensitivity, low detection limit, and good reproducibility.  相似文献   

10.
A glassy carbon electrode (GCE) was modified with the nickel(II)-bis(1,10-phenanthroline) complex and with multi-walled carbon nanotubes (MWCNTs). The nickel complex was electrodeposited on the MWCNTs by cyclic voltammetry. The modified GCE displays excellent electrocatalytic activity to the oxidation of ascorbic acid (AA). The effects of fraction of MWCNTs, film thickness and pH values were optimized. Response to AA is linear in the 10 to 630 μM concentration range, and the detection limit is 4 μM (at a signal-to-noise ratio of 3:1). The modified electrode was applied to determine AA in vitamin C tablets and in spiked fruit juice.
Graphical Abstract
A simple and sensitive ascorbic acid electrochemical sensor was fabricated by electrodepositing of nickel complex onto multi-walled carbon nanotubes/glassy carbon electrode. The sensor has high selectivity, rapid current response, is easy to construct and can be utilized for ascorbic acid determination.  相似文献   

11.
We report on a glassy carbon electrode (GCE) modified with a film of chitosin containing acid fuchsin (AF) adsorbed onto zirconia nanotubes. The mixture was polymerized by cyclic voltammetric scannings in the potential range from - 0.8?V to +1.3?V in buffer solution to produce a hybrid film electrode (nano-ZrO2/PAF/GCE). The morphology of the hybrid film electrode surface was characterized by scanning electron microscopy. Its electrochemical properties were studied via electrochemical impedance spectroscopy. The electrochemical response of nicotinamide adenine dinucleotide (NADH) was investigated by differential pulse voltammetry and amperometry. The results indicated that the nano-ZrO2/PAF/GCE possesses well synergistic catalytic activity towards NADH. Compared to an unmodified GCE, the oxidation overpotential is negatively shifted by 224?mV, and the oxidation current is significantly increased. Under optimal conditions, the amperometric response is linearly proportional to the concentration of NADH in the 1.0 – 100.0?μM concentration range. Ethanol also can be determined by amperometry if alcohol dehydrogenase and NADH are added to the sample. Two linear relationships between current and alcohol concentration were obtained. They cover the range from 0.03 to 1.0?mM, and from 1.0 to 12.0?mM.
Figure
Figure A ZrO2 nanotubes/poly(acid fuchsin) hybrid film modified glassy carbon electrode was electrochemically fabricated. The oxidation overpotential of NADH at the developed nano-ZrO2/PAF/GCE was negatively shifed and the oxidation current was significantly increased. The nano-ZrO2/PAF/GCE was successfully applied to determine NADH and ethanol.  相似文献   

12.
This work described a novel sensor for detection of l -tryptophan (Trp) by electrodeposition of gold nanoparticles (AuNPs) onto the poly(alizarin red S) film pre-cast on a glassy carbon electrode (GCE). Alizarin red S (ARS) was deposited on the surface of the GCE by electropolymerization, and gold nanoparticles (AuNPs) were attached onto the poly(ARS) film by electrodeposition, forming an AuNPs–PARS nanocomposite film-modified GCE (AuNPs–PARS/GCE). Then electrochemical impedance spectroscopy (EIS) and scanning electron microscopy (SEM) were used to characterize modified electrodes. The Nyquist diagrams of EIS indicated that the PARS film and AuNPs were successfully immobilized on the surface of GCE, and the electron transfer resistance value of electrode changed efficiently. The SEM image showed that the immobilized AuNPs were spherical in shape. The AuNPs–PARS/GEC displayed excellent amperometric response for Trp. The amperometric responses have two linear ranges from 0.02 to 0.5 μM and 0.5 to 20.0 μM, with sensitivities of 1.63(±0.08) and 0.21(±0.01)?μAμM?1, respectively. Its detection limit was 6.7 nM at a signal-to-noise ratio of 3. The proposed method was applied to determine Trp.
Figure
The procedure of the L-tryptophan sensor preparation  相似文献   

13.
We have developed a sensor for the square wave anodic stripping voltammetric determination of Pb(II). A glassy carbon electrode was modified with a thin film of an antimony/poly(p-aminobenzene sulfonic acid) composite in air-saturated aqueous solution of pH 2.0. Compared to a conventional antimony film electrode, the new one yields a larger stripping signal for Pb(II). The conditions of polymerization, the concentration of Sb(III), the pH value of the sample solution, the deposition potential and time, frequency, potential amplitude, and step increment potential were optimized. Under the optimum conditions, a linear response was observed for Pb(II) in the range of 0.5 to 150.0 μg?L?1. The detection limit for Pb(II) is 0.1 μg?L?1.
Figure
The surface of a glassy carbon electrode (GCE) was modified by electropolymerization of p-aminobenzene sulfonic acid (p-ABSA) and the modified electrode was then prepared by in situ depositing antimony and target metal on the poly(p-ABSA) coated glassy carbon electrode. The antimony/poly(p-ABSA) film electrode displays high electrochemical activity in giving a peak current that is proportional to the concentration of Pb(II) in a certain range.  相似文献   

14.
We describe the fabrication of a sensitive label-free electrochemical biosensor for the determination of sequence-specific target DNA. It is based on a glassy carbon electrode (GCE) modified with graphene, gold nanoparticles (Au-NPs), and polythionine (pThion). Thionine was firstly electropolymerized on the surface of the GCE that was modified with graphene by cyclic voltammetry. The Au-NPs were subsequently deposited on the surface of the pThion/graphene composite film by adsorption. Scanning electron microscopy and electrochemical methods were used to investigate the assembly process. Differential pulse voltammetry was employed to monitor the hybridization of DNA by measuring the changes in the peak current of pThion. Under optimal conditions, the decline of the peak current is linearly related to the logarithm of the concentration of the target DNA in the range from 0.1 pM to 10 nM, with a detection limit of 35 fM (at an S/N of 3). The biosensor exhibits good selectivity, acceptable stability and reproducibility.
Figure
A label-free DNA biosensor based on Au-NPs/pThion/graphene modified electrode has been fabricated. Differential pulse voltammetry (DPV) was employed to monitor DNA hybridization event by measurement of the peak current changes of pThion.  相似文献   

15.
A thin film of poly(eriochrome black T) was deposited on the surface of glassy carbon electrode by cyclic voltammetry, and this system is shown to enable the sensitive determination of adenine (A) and guanine (G). Scanning electron microscopy, Fourier transform infrared spectroscopy and electrochemical impedance spectroscopy were carried out to characterize the film which exhibits excellent electrocatalytic activity toward the oxidation of A and G in 0.1 M phosphate buffer solution (pH 4.0). Square wave voltammetry reveals an oxidation peak at 1084 mV whose current is linearly related to the concentration of A in the range from 0.05 to 1.00 μM. The oxidation peak for G occurs at 788 mV, and its current is linearly related to the concentration of G in the range from 0.025 to 1.00 μM. The detection limits are 0.017 μM for A and 0.008 μM for G (at S/N?=?3), respectively. The modified electrode displays good reproducibility and selectivity for the determination of A and G. The sensor was applied to quantify A and G in fish sperm DNA with satisfactory results.
Figure
Square wave voltammograms of bare GCE (a), PEBT/GCE (b) in the presence of 1.00 μM adenine (A) and 1.00 μM guanine (G).  相似文献   

16.
We describe a modified glassy carbon electrode (GCE) for the sensitive determination of nitrite in waste water samples. The GCE was modified by electrodeposition of cobalt oxide nanoparticles on multi-walled carbon nanotubes (MWCNTs) deposited on a conventional GCE. Scanning electron microscopy and electrochemical techniques were used for the characterization of the composite material which is very uniform and forms a kind of nanoporous structure. Electrochemical experiments showed that the modified electrode exhibited excellent electrocatalytic properties for nitrite. Amperometry revealed a good linear relationship between peak current and nitrate concentration in the 0.5 to 250???M range with a detection limit of 0.3???M (S/N?=?3). The method has been applied to the amperometric detection of nitrite. The modified electrode displays good storage stability, reproducibility, and selectivity for a promising practical application.
Figure
The dense and entangled CoOx/MWCNTs nanocomposite showed a three-dimensional nanoporous structure. The three-dimensional nanoporous structure provided ample space to allow fast mass transport of ions through the electrolyte/electrode interface as well as a conductive network for enhancing electronic conductivity which was favorable to the catalytic application of CoOx.  相似文献   

17.
The ionic liquid 1-butyl -3-[3-(N-pyrrole)-propyl]imidazolium tetrafluoroborate was employed to fabricate a glassy carbon electrode (GCE) modified with a porous film of a polymerized ionic liquid. The resulting film electrode was treated with sodium dodecyl sulfonate solution to exchange the terafluoroborate anions by dodecyl sulfonate groups. This was confirmed by X-ray photoelectron spectroscopy. The morphology of the modified GCE was characterized by scanning electron microscopy and revealed a nanoporous surface. The electrochemical properties of this film electrode were studied by electrochemical impedance spectroscopy using the hexacyanoferrate(II/III) system as an electroactive probe. The response to bisphenol A was investigated by voltammetry. Compared to the unmodified GCE, the oxidation potential is positively shifted, and the oxidation peak current is strongly increased. Experimental conditions were optimized and resulted in an oxidation peak current that is linearly related to concentration of bisphenol A in the 10 nM to ~ 10 μM range. The detection limit is 8.0 nM (at S/N?=?3). The electrode was successfully applied to the determination of bisphenol A in leachates of plastic drinking bottles, and its accuracy was verified by independent assays via HPLC.
Figure
A poly{1 -butyl -3 -[3 -(N -pyrrole)propyl] imidazolium dodecyl sulfonate ionic liquid} nanoprous film electrode was fabricated with potential step technique and anionic exchange. The obtained polymerized ionic liquid film electrode was demonstrated possessing enhanced effects for bisphenol A determination.  相似文献   

18.
A DNA biosensor was constructed by immobilizing a 20-mer oligonucleotide probe and hybridizing it with its complementary oligomer on the surface of a glassy carbon electrode modified with gold nanoparticles. The properties of the biosensor and its capability of recognizing its complementary sequence were studied by electrochemical impedance spectroscopy. The oxidative stress caused by cadmium ions can be monitored by differential pulse voltammetry using the cobalt(III)tris(1,10-phenanthroline) complex and methylene blue as electrochemical indicators. The biosensor is capable of indicating damage caused by Cd(II) ions in pH 6.0 solution. The results showed that the biosensor can be used for rapid screening for DNA damage.
Figure
DPV of DNA biosensors before (a, c) and after hybridization (b, d) at 1.0 ×10?C7 mol·L-1target DNA concentration, (a) probe DNA/Au/GCE and (b) dsDNA/Au/GCE (c) probe DNA/GCE, (d) dsDNA/GCE  相似文献   

19.
We have prepared a glassy carbon electrode modified with poly-2,6-pyridinedicarboxylic acid and with magnetic Fe3O4 nanoparticles. This modification enhances the effective surface area and the electrocatalytic oxidation of nicotinamide adenine dinucleotide (NADH) in addition to providing positively charged groups for electrostatic assembly of the phosphate group of NADH. The modified electrode responds linearly to NADH in the range from 5?×?10?8 to 2.5?×?10?5?M and gives a lower detection limit of 1?×?10?8?M. It displays satisfactory selectivity and reproducibility. The sensor was applied to rapid screening of plant extracts for their antioxidant properties.
Figure
Poly-2,6-pyridinedicarboxylic acid (PDC) was fabricated by electropolymerizing 2,6-pyridinedicarboxylic acid with cyclic voltammetry (CV) on the glassy carbon electrode (GCE) surface. The magnetic Fe3O4 nanoparticles treated with aminopropyltriethoxysilane (APTS) modified on the PDC/GCE to form APTS-Fe3O4/PDC composite film. The APTS-Fe3O4/PDC film had enhanced the effective electrode surface area and provided positively charged groups for electrostatic assembly of phosphate group of NADH.  相似文献   

20.
We have prepared a new voltammetric sensor for guanine and adenine. It is based on a glassy carbon electrode modified with a Langmuir-Blodgett film made from tetraoxocalix[2]arene[2]triazine. The direct electro-oxidation of adenine and guanine was investigated and the results indicat that in contrast to a bare glassy carbon electrode both guanine and adenine cause an increase in the oxidation peak currents along with a negative shift of the oxidation potentials. The electrode enables the simultaneous determination of guanine and adenine using square wave voltammetry. Analysis of acid denatured calf thymus DNA was carried out and the value of (G + C)/(A + T) was correctly found to be 0.75.
Figure
Both guanine and adenine showed the increase of the oxidation peak currents on LBTOCT-GCE in contrast to that on the bare glassy carbon electrode (GCE).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号