共查询到20条相似文献,搜索用时 62 毫秒
1.
采用开环聚合的方法 ,合成了组成不同的PLA b PEO b PLA三嵌段共聚物 .滴加选择性溶剂水于共聚物的良溶剂溶液中 ,制备了共聚物以水为介质的“平头”聚集体胶束溶液 .把聚集体胶束溶液浇铸在云母片上 ,采用扫描探针显微镜 (SPM)表征了其形貌和表面微粘弹性 .发现脱离了极性介质水的聚集体的表面性质发生了不均一化 ,聚集体的顶部比相连接的部分具有较高的储能模量 .聚集体环境的改变使聚集体中不同嵌段的迁移导致了这种表面粘弹性的不均一 .另外 ,采用动态光散射的方法测量了体系溶液中聚集体胶束的尺寸 .实验发现光散射所得到的聚集体的尺寸远远大于SPM所得到尺寸 .增加聚合物的起始浓度使聚集体胶束的尺寸以及多分散性都在不同程度上增大 .然而聚合物的不同 ,这种增加的程度会有比较大的差别 相似文献
2.
在芴苯结构主链中引入苯并噻唑作为电子受体、侧链上引入N,N-二丁基苯胺作为电子给体,通过Suzuki反应制备了新型交叉共轭聚合物P1,同时合成主链中不含苯并噻唑的芴苯类共聚物P2作为对比;对两者的化学结构和光物理性质进行了表征,并研究了聚合物对离子的光学传感性能.实验和模拟计算结果均表明,P1中存在着强的分子内电荷转移效应;引入电子给体和受体(D-A)能够有效地调控交叉共轭聚合物的光学特性,这种D-A型交叉共轭聚合物是一类潜在的具有荧光增强性能的化学传感材料. 相似文献
3.
两亲性含糖嵌段共聚物在水中分子聚集形态的转变 总被引:1,自引:0,他引:1
两亲性嵌段共聚物在不同的介质中可形成不同形态的有序分子聚集体[1~3].当其亲水段长度远大于亲油段时,在水中主要形成球形胶束[1];但当亲水段长度远小于亲油段时,则形成多种形态的分子聚集体,即所谓的“crew-cut”聚集体,如球形、柱状、层状、囊泡和管状等[4].Eisenberg等[4~6]详细研究了聚苯乙烯-b-聚丙烯酸在水中的“crew-cut”聚集体,发现聚集体的形态和多种因素有关,如共聚物组成、溶剂、pH值和金属离子等.以两亲分子形成的囊泡不但可以用来模拟生物膜的结构,而且在药物载体… 相似文献
4.
聚苯乙烯-b-聚氧乙烯-b-聚苯乙烯三嵌段共聚物的自组装 总被引:1,自引:0,他引:1
小分子表面活性剂、磷脂、接枝及嵌段共聚物等两亲分子在选择性介质中能够自组装形成特定的分子聚集体 [1,2 ] .嵌段共聚物自组装的某些行为具有生物膜模拟性 ,如最近发现的嵌段共聚物自组装囊泡 [3~ 5] .诸多因素影响着嵌段共聚物在稀溶液中的自组装行为 [6] .对于 ABA型三嵌 相似文献
5.
PAn-PEG-PAn三嵌段共聚物的合成和表征 总被引:4,自引:0,他引:4
在合成α,ω-双(对氨基苯基)聚乙二醇(BAPPEG)的基础上, 用化学氧化共聚法制备了PAn-PEG-PAn三嵌段共聚物. 研究了共聚时苯胺(An)与BAPPEG摩尔比(r)对共聚物的化学组成、UV-Vis谱图、热稳定性和在水溶液中的自组装特性的影响. 结果表明:随着r的增加, 共聚物中PAn链段的含量增大;其UV-Vis谱图中对应PAn链段的吸收峰出现红移, 且红移的程度增加; 热稳定性提高. 三嵌段共聚物在水中表现出自组装特性: 随着r的增加, 先形成粒径约为90 nm的PAn链段/PEG链段球型核壳胶束, 然后形成长为400~800 nm, 直径约为30 nm的棒状结构, 和棒状结构聚集形成的网状结构, 最后又变成球型胶束. 相似文献
6.
7.
8.
首先,以溴代聚乙二醇单甲醚(PEO-Br)为引发剂、甲基丙烯酸丁酯(BMA)为单体,通过原子转移自由基聚合(ATRP)制备了一系列具有不同聚乙二醇(PEO)质量分数的聚甲基丙烯酸丁酯-b-聚乙二醇嵌段共聚物(PBMA-b-PEO)。在此基础上,将手性酒石酸(TA)以氢键的方式选择性掺入到嵌段共聚物的PEO相中,诱导嵌段共聚物自组装制备具有手性螺旋结构的复合薄膜PBMA-b-PEO/TA。利用小角X射线散射(SAXS)、透射电子显微镜(TEM)和圆二色光谱(CD)对嵌段共聚物复合薄膜进行表征,研究了嵌段质量分数对手性诱导嵌段共聚物螺旋结构自组装的影响。结果表明:掺入TA与嵌段共聚物质量比为0.12、0.15的TA,当PEO质量分数为0.17~0.24时,有利于嵌段共聚物相分离形成柱状螺旋结构;当PEO质量分数增加至0.26时,嵌段共聚物自组装则形成层状结构,在分子间氢键作用下虽然发生手性转移,但无法得到螺旋结构。 相似文献
9.
双亲嵌段共聚物自组装特性的计算机模拟 总被引:3,自引:0,他引:3
双亲嵌段共聚物在不同体系下会自组装成各种形貌的超分子聚集体,是目前人们研究的热点,并在工业领域得到了广泛应用。计算机模拟是研究其自组装特性机理及聚集体结构、动态性质的有效工具。本文对近年来嵌段共聚物自组装特性的热力学模型和动力学模拟的研究进展进行了综述,分析了其中存在的问题并进行了展望。 相似文献
10.
在pH=2·9时,细胞色素c保持类天然的结构;和马来酸-烯烃交替共聚物作用后,细胞色素c的α-螺旋结构基本保持不变,但是三级结构被破坏.另一方面,在pH=2·1时,细胞色素c去折叠形成伸展的无规卷曲构象;马来酸-烯烃交替共聚物可以诱导酸变性的细胞色素c从无规卷曲构象转变为α-螺旋结构.在酸性溶液中,由于马来酸-异丁烯交替共聚物和细胞色素c之间更强的相互作用,其对蛋白质结构的影响大于马来酸-1-十四烯交替共聚物.相对于小分子,聚合物可以在低浓度条件下提供有利于蛋白质结构转换的微环境. 相似文献
11.
原子转移自由基聚合合成甲基丙烯酸丁酯与丙烯酸全氟烷基乙酯两嵌段共聚物及其性能的研究 总被引:19,自引:0,他引:19
通过原子转移聚合合成了大分子引发剂PBMA Br及系列含氟两嵌段共聚物P(BMA b FAEM) ,并利用1 H NMR、F EA、GPC、FTIR对其结构进行了表征 .所合成的含氟嵌段共聚物膜具有低临界表面张力 .本文通过接触角的测定研究了含氟两嵌段共聚物的憎水、憎油性能与共聚物的含氟量 ,热处理温度 ,热处理时间的关系 ,结果表明含氟嵌段PFAEM具有向空气 聚合物界面富集的倾向 ,在共聚物中引入含氟嵌段可以明显提高共聚物的憎水、憎油性 .当含氟嵌段达 7 6wt%时 ,临界表面张力 (γc =18 7mN m)已与聚四氟乙烯相当 (γc=18 5mN m) ,显示出明显的低表面能特征 相似文献
12.
以溴代聚砜为大分子引发剂,三(2-二甲氨基乙基)胺(Me6TREN)/CuBr为催化体系,通过原子转移自由基聚合(ATRP)制备了结构预定且分子量分布窄的光学活性三嵌段共聚物,聚(N-甲基丙烯酰-L-亮氨酸甲酯)-嵌-聚砜-嵌-聚(N-甲基丙烯酰-L-亮氨酸甲酯)(PMALM-b-PSF-b-PMALM).通过核磁共振氢谱(1H-NMR)、凝胶渗透色谱(GPC)、端羟基滴定等方法,研究了所合成的三嵌段共聚物的结构.利用差示扫描量热法(DSC)、热失重分析(TGA)以及圆二色谱(CD)研究了嵌段共聚物的热性能和旋光性能.根据TGA计算出的PMALM链段与PSF链段的重复单元数之比,与1H-NMR计算的结果能较好的吻合.共聚物在聚合过程中旋光度发生了反转,且比单体的旋光度的绝对值显著增加,这可能是由于聚合过程中分子主链感应出了手性的二级结构诱导出手性放大效应引起的.在CH3OH/CCl4混合溶剂中,共聚物比旋光度的绝对值随溶剂极性增大呈线性减小趋势,这一结果与CD一起证实了PMALM链段的无规卷曲结构. 相似文献
13.
14.
一种含乙氧羰基偶氮苯液晶三嵌段共聚物的合成与表征 总被引:1,自引:0,他引:1
利用原子转移自由基聚合(ATRP),合成了一种含有乙氧羰基偶氮苯的液晶三嵌段共聚物,并合成了一种同样偶氮生色团的均聚物进行对比.均聚物(PC6ET)由偶氮单体甲基丙烯酸{6-[4-(4-乙氧羰基苯基偶氮)苯氧基]己酯}(C6ET)的ATRP反应制备.嵌段共聚物的合成,先通过聚环氧乙烷(PEO)和过量的2-溴异丁酰溴、三乙胺反应,得到双端大分子引发剂(Br-PEO-Br);再进一步通过C6ET的ATRP反应,得到了三嵌段共聚物(PC6ET-PEO-PC6ET).热分析、偏光显微镜观察和X射线衍射实验证实,合成的均聚物和嵌段共聚物均为近晶型液晶聚合物.三嵌段共聚物的液晶清亮点比均聚物的稍低. 相似文献
15.
16.
17.
利用原子转移自由基聚合(ATRP)制备了中间链段含对氰基偶氮苯尾挂液晶基元的PMAA-b-PMAZOCN-b-PMAA两亲性三嵌段共聚物.首先合成了含有偶氮苯液晶基元的甲基丙烯酸酯单体;再使用小分子双端引发剂,以对壬基联二吡啶、溴化亚铜为催化剂,通过ATRP反应制备了含偶氮苯液晶侧基的双端大分子引发剂.进一步以氯化亚铜为催化剂,用该大分子引发剂引发甲基丙烯酸叔丁酯聚合,制备了结构规则的PtBMA-b-PMAZOCN-PtBMA三嵌段共聚物.通过在三氟乙酸作用下的选择性水解,将PtBMA段中的甲基丙烯酸叔丁酯单体单元转化为甲基丙烯酸,得到了两端亲水,中间疏水的两亲性ABA三嵌段共聚物.用1H-NMR、GPC、PLM、DSC等对产物进行了表征.并利用溶剂诱导微相分离的方法,研究了该共聚物在THF/水混合溶剂中的自组装行为.TEM结果显示,在采用的亲疏水链段比例的条件下,得到了囊泡结构.囊泡结构的平均直径在300~500 nm.在固态下经过紫外光照射,囊泡结构转变为实心胶体球. 相似文献
18.
用ATRP法构筑核壳型梯度极性的多羟基多臂星状超支化聚合物及聚合物刷——双层聚合物刷的合成与表征 总被引:3,自引:0,他引:3
设计并通过原子转移自由基聚合方法 (ATRP)合成了核壳型多羟基多臂星状超支化聚合物刷 .以 2 溴异丁基酰溴封端的超支化聚 (3 乙基 3 羟甲基氧杂环丁烷 ) (HP Br)作为大分子引发剂 ,采用Cu(I)Br和N ,N ,N′ ,N′ ,N″ 五甲基二乙基三胺 (PMDETA)催化体系 ,在丁酮与丙醇的混和溶液中 ,通过甲基丙烯酸羟乙酯(HEMA)的ATRP溶液聚合 ,得到了一系列含有大量羟基的多臂星状超支化聚合物刷 (HP g PHEMA) ,并考察了其羟基的活性 ,发现羟基还可以与苯甲酰氯发生反应 .产物的结构和热性能用1 H NMR、FTIR、GPC、TGA、DSC等进行了表征和测试 . 相似文献
19.
用Grubbs第二代催化剂引发降冰片烯类单体(NBEDE)和链转移剂在离子液体[bmim][BF4]中的开环易位聚合(ROMP)反应,反应体系保持均相,无聚合物析出,得到两端为叔溴的遥爪型官能化聚合物(Br-PNBEDE-Br).以Br-PNBEDE-Br作为大分子引发剂,在离子液体介质中引发甲基丙烯酸2-(二甲氨基)乙酯(DMAEMA)的原子转移自由基聚合(ATRP),制得分子量分布较窄的两亲性三嵌段共聚物(PDMAEMA-PNBEDE-PDMAEMA).利用动态激光光散射(DLS),原子力显微镜(AFM),透射电镜(TEM)等技术,考察嵌段共聚物在选择性溶剂/共溶剂(H2O/THF)中的胶束行为,以及溶液pH值对胶束的影响.结果表明,TEM观察到胶束为球形,由于TEM和AFM是在干态下测得胶束的粒径,而DLS是在溶液中测定胶束的流体力学直径,所以TEM和AFM得到的胶束粒径小于DLS的结果.不同pH值对胶束尺寸大小有明显的影响,胶束微粒随着pH值的增大而增大. 相似文献
20.
分子量规整聚p-乙烯基苯甲酸及苯乙烯p-乙烯基苯甲酸两嵌段共聚物的合成 总被引:2,自引:0,他引:2
当两嵌段共聚物为由性质不同的规制 (Well defined)分子量两链段所构成时 ,在只对其中一链段为良溶剂的选择性溶剂中 ,它能够自组装形成尺寸均一的胶束 .胶束的形态与共聚物的组成、浓度、溶剂的性质等关系密切[1] .因此 ,两嵌段共聚物的合成颇被关注[2 ] .这一性质使得嵌段共聚物在分子识别、药物和其他物质的输送、基因疗法、水系涂料、污染物的除去、催化剂以及传感器等方面展示着潜在的应用前景 .规制分子量的两嵌段共聚合物的合成主要通过阴离子、阳离子、开环易位、基团转移等活性或可控聚合来实现 .但是这些方法受到单体… 相似文献