首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
We previously found that a copolymer, poly(NIPAM- co-BP), consisting of N-isopropylacrylamide (NIPAM) and benzophenone (BP) units, behaves as a photosensitizer showing temperature-controlled oxygenation activity by singlet oxygen ( (1)O 2) in water ( J. Am. Chem. Soc. 2006, 128, 8751-8753 ). This polymer shows a heat-induced oxygenation enhancement at <20 degrees C, while showing suppression at >20 degrees C. This is driven by a heat-induced phase transition of the polymer from coil to micelle and then to globule state, controlling the stability and diffusion of (1)O 2 and the location of substrate. In the present work, effects of polymer concentration and BP content of the polymer on the oxygenation activity were studied at 5-35 degrees C. Increase in the polymer concentration leads to activity decrease at >20 degrees C due to strong polymer aggregation, suppressing incident light absorption of the BP units. With a decrease in BP content of the polymer, heat-induced oxygenation enhancement at <20 degrees C is more pronounced because formation of small size micelles accelerates (1)O 2 oxygenation. The obtained findings reveal that the polymer with low BP content, when used at high concentration, shows clear-cut off- on- off activity change against the temperature window: very low activity at <5 degrees C and >25 degrees C, and very high activity at middle temperature range.  相似文献   

2.
A cross-linked poly- N-isopropylacrylamide (polyNIPAM) nanocapsule, TH@PC, containing thionine (TH), an organic photosensitizer, has been synthesized. This capsulated polymeric photosensitizer promotes a singlet oxygen oxygenation ( (1)O 2) accurately controlled by temperature: it shows high oxygenation activity at low temperature, but shows activity decrease with a rise in temperature, resulting in almost zero activity at >40 degrees C. The clear on-off activity control is driven by a heat-induced structure change of the capsule from the swollen single capsule to contracted state, and then to aggregate, behaving as an intelligent (1)O 2 filter. At low temperature, the capsule exists as the swollen single capsule, which allows (1)O 2 diffusion to bulk water, resulting in high oxygenation activity. A rise in temperature leads to contraction of the capsule, reducing the mesh size of the capsule wall. This suppresses (1)O 2 diffusion to bulk water and shows decreased activity. Intercapsule aggregation at >30 degrees C further suppresses (1)O 2 diffusion and shows almost no activity. The capsule promotes reversible activity control regardless of the heating/cooling process and can be reused with a simple recovery process.  相似文献   

3.
A simple-structured copolymer, poly(NIPAM-co-HC), consisting of N-isopropylacrylamide (NIPAM) and 4-(4-dimethylaminostyryl)pyridine (hemicyanine, HC) units as thermoresponsive and fluorescent signaling parts, respectively, has been synthesized. This copolymer dissolved in water shows very weak fluorescence at <25 degrees C, while showing fluorescence enhancement at >25 degrees C. The fluorescence intensity increases with a rise in temperature and saturates at >40 degrees C, enabling temperature detection at 25-40 degrees C. The fluorescence enhancement is driven by a heat-induced phase transition of the polymer from coil to globule state. The HC units within the coil state polymer exist as the nonfluorescent benzenoid form; however, the less polar domain formed inside the globule state polymer leads to transformation of the HC unit to the fluorescent quinoid form, resulting in heat-induced fluorescence enhancement. The fluorescence intensity measured at 40 degrees C is >20-fold higher than the intensity at <25 degrees C, which is the highest enhancement value among the fluorescent thermometers proposed so far. The polymer shows reversible fluorescence enhancement/quenching, regardless of the heating/cooling process. In addition, the polymer shows high reusability with a simple recovery process.  相似文献   

4.
The role of sphingomyelinase (SMase) activation and mitogen activated protein kinases (MAPKs) activation in cellular apoptosis was investigated during the hyperthermic treatment of HL-60 human leukemia cells. Treating the cells for 1 h at 43(o)C caused more than 50% of cellular apoptosis within several hours. The neutral-SMase activity in the cells treated for 1 h at 42(o)C was slightly increased but decreased in the cells treated at 43(o)C or 44(o)C for the same period whereas the acid SMase activity was slightly increased after heating the cells at 42(o)C and 43(o)C and markedly increased at 44(o)C for 1 h. Treatment of cells with inhibitors of SMase activation and ceramide formation significantly reduced the heat-induced apoptosis. Three major families of mitogen-activated protein kinases (MAPKs), i.e. ERK1/2, p38 and JNK, were activated by the hyperthermic treatment of cells. Inhibition of ERK1/2 with PD98059 exerted little effect on the heat-induced apoptosis and p38 inhibition with SB203580 slightly lessened apoptosis whereas, inhibition of JNK with SP600125 markedly suppressed the heat-induced apoptosis. These results indicate that heat-shock induced the activation of SMase, particularly acid-SMase, thereby causing apoptosis and that JNK played a pivotal role in heat-induced apoptosis in HL-60 leukemia cells.  相似文献   

5.
Heat stability has been studied in model systems of oil-in-water emulsions (3 wt.% total protein, 45 vol.% n-tetradecane, pH 6.8, ionic strength 30-50 mM) with pure beta-lactoglobulin (beta-lg) as the main emulsifier. The effect of small additions of sodium caseinate, beta-casein or alpha s1-casein prior to emulsion preparation has been investigated. Samples heated for 3 min at 90 degrees C were monitored with respect to changes in viscosity and particle-size distribution. As expected, the pure beta-lg-stabilized emulsions were susceptible to heat-induced changes. But the replacement of just 1% of the beta-lg by sodium caseinate (0.03 wt.% caseinate in the total emulsion) led to complete elimination of any heat-induced viscosity or particle size increase. These findings show that a very small proportion of casein can inhibit the susceptibility of a beta-lg-based emulsion to heat-induced destabilization. The magnitude of the effect is dependent on the type of casein, with the order of effectiveness being beta-casein>sodium caseinate>alpha s1-casein. This work has potential implications for the development of milk protein-stabilized emulsions of improved shelf life.  相似文献   

6.
Biochemical disturbances of the reactive oxygen species metabolism revealed in subjects with Down's syndrome (DS), and the findings indicating that heat-induced cell alterations have been, at least, partly mediated by reactive oxygen species, made the elucidation of the response of trisomic cells to elevated temperatures of special interest. Kinetic analysis of cell-survival curves, accompanied by the flow cytometry and the scanning electron microscopy (SEM) examinations, and their relationship with the cell membrane fluidity, were undertaken. At each temperature (48-54 degrees C), Dq parameters, representing the ability to accumulate sublethal damages, were similar for both cell groups. D0 parameters (inverse leakage rates; D0 = 1/k) were greater for DS cells at each temperature below 54 degrees C. The haemolysis sensitivity ratio (HSR) showed that DS erythrocytes were, in average, 1.60 times more resistant to heat injury than those from normal subjects. Activation energies of haemolysis, calculated according to the Arrhenius equation, were similar both for normal (290.8 +/- 6.5 [kJ/mol]) and DS erythrocytes (288.0 +/- 5.5 [kJ/mol]). Flow cytometry studies showed that the scattering properties of intact DS erythrocytes (reflecting size, volume, shape and cell membrane surface morphology) were different than those of normal cells. Scanning electron micrographs and scattering diagrams obtained for cells submitted to heat stress (51 degrees C) confirmed that DS erythrocytes were more resistant, to a certain extent, to heat-induced disruption than normal cells. The steady-state fluorescence anisotropy of TMA-DPH (1-(4-trimethyl-ammoniumphenyl)-6-phenyl-1,3,5-hexatriene) showed that untreated DS erythrocytes had substantially lower fluidity (r = 0.356 +/- 0.008) of the outer monolayer of cell membranes as compared to normal cells (r = 0.324 +/- 0.011). The increase of the cell membrane fluidity during exposure to heat was observed. The greatest elevation of cell membrane fluidity occurred during the preleakage period, immediately upon the heat treatment and was considered as a rate-limiting step of heat-induced haemolysis.  相似文献   

7.
The origin of heat-induced chlorophyll fluorescence rise that appears at about 55-60 degrees C during linear heating of leaves, chloroplasts or thylakoids (especially with a reduced content of grana thylakoids) was studied. This fluorescence rise was earlier attributed to photosystem I (PSI) emission. Our data show that the fluorescence rise originates from chlorophyll a (Chl a) molecules released from chlorophyll-containing protein complexes denaturing at 55-60 degrees C. This conclusion results mainly from Chl a fluorescence lifetime measurements with barley leaves of different Chl a content and absorption and emission spectra measurements with barley leaves preheated to selected temperatures. These data, supported by measurements of liposomes with different Chl a/lipid ratios, suggest that the released Chl a is dissolved in lipids of thylakoid membranes and that with increasing Chl a content in the lipid phase, the released Chl a tends to form low-fluorescing aggregates. This is probably the reason for the suppressed fluorescence rise at 55-60 degrees C and the decreasing fluorescence course at 60-75 degrees C, which are observable during linear heating of plant material with a high Chl a/lipid ratio (e.g. green leaves, grana thylakoids, isolated PSII particles).  相似文献   

8.
Ovoglycoprotein from chicken egg whites (OGCHI) subjected to 80 degrees C has produced the associated OGCHI, which is a heat-induced aggregate of OGCHI. The molecular weight of the aggregate was estimated to be ca. 5.7 million daltons by a low-angle laser light-scattering detection. The heat-induced aggregate of OGCHI was found to dissociate reversibly to the OGCHI monomer. The OGCHI aggregate has little chiral recognition ability, or has much lower chiral recognition ability than the native OGCHI. Further, the OGCHI monomer from the reversibly dissociated OGCHI aggregate has chiral recognition ability comparable to that of the native OGCHI.  相似文献   

9.
Decay of metarhodopsin II was accelerated by hydroxylamine treatment or dark incubation of metarhodopsin II at 30 degrees C. The products thus obtained after decay of metarhodopsin II induced GTPase activity on transducin as well as metarhodopsin II suggesting that rhodopsin could activate transducin after the decay of metarhodopsin II intermediate. After urea-treated bovine rod outer segment membrane was completely bleached, rhodopsin in the membrane was regenerated by the addition of 11-cis retinal at various temperatures between 0 and 37 degrees C. The capacity to induce GTPase activity on transducin and phosphate incorporating capacity catalyzed by rhodopsin kinase were measured on such rhodopsins. The results showed that: (1) Regeneration of alpha band of rhodopsin was complete regardless of regeneration temperature; (2) When regenerated at temperatures below 10 degrees C, rhodopsins induced a GTPase activity on transducin in the dark even after treatment with hydroxylamine, whereas rhodopsins after regeneration at temperatures above 13 degrees C did not; (3) When regenerated at 0 degrees C, rhodopsin was phosphorylated if incubated with rhodopsin kinase and ATP in the dark, whereas the spectrally regenerated rhodopsin at 30 degrees C was not. The complete quenching of functions of photoactivated rhodopsin was achieved by recombination with 11-cis retinal at temperatures above 13 degrees C but not below 10 degrees C suggesting the existence of a low temperature intermediate upon regeneration.  相似文献   

10.
Mesitylcopper reacts with flavonol (flaH) in the presence of 1,3-bis(2-pyridylimino)isoindoline (indH) to yield the diamagnetic complex CuI(fla)(indH), which on reaction with molecular oxygen undergoes oxidative splitting of the C2-C3 bond of the pyranone ring of the flavonolate ligand to give CuI(indH)(O-bs) (O-bs = O-benzoylsalicylate) (orthorhombic, P1, a = 8.048(7) A, b = 8.969(9) A, c = 19.240(2) A, alpha = 85.69 degrees, beta = 80.24(7) degrees, gamma = 77.87(7) degrees, V = 1337(2) A3, Z = 2) and carbon monoxide. The reaction of [CuI(CH3CN)4]ClO4, flaH, and indH with dioxygen at room temperature affords the paramagnetic complex [CuII(fla)(indH)]ClO4 (mu = 2.10 mu B), and after elimination of HClO4, CuII(fla)(ind) (orthorhombic, Pbca, a = 8.888(2) A, b = 19.169(7) A, c = 33.614(10) A, alpha = beta = gamma = 90 degrees, V = 5727(3) A3, Z = 8) with mu = 1.86 mu B is formed. The latter undergoes cleavage of the pyranone ring on oxygenation at 80 degrees C to give CuII(ind)(O-bs) (mu = 1.87 mu B, nu(CO) = 1742 cm-1, and nu(CO2) = 1581, 1387 cm-1) and carbon monoxide. CuII(fla)(ind) and [CuII(fla)(indH)]ClO4 serve as good catalysts for the oxygenation of flavonol to O-benzoylsalicyclic acid.  相似文献   

11.
The helix-coil transition of poly[d(I-C)] and poly[d(A-T)] was studied as a function of hydrostatic pressure, temperature, and sodium ion concentration. These studies were undertaken in light of a recently published phase diagram for double stranded nucleic acids [Dubins et al. J. Am. Chem. Soc. 2001, 123, 9254-9259]. The sign and magnitude of the volume change for the heat-induced helix-coil transition, DeltaV(T), of poly[d(I-C)] and poly[d(A-T)] were dependent on the helix-coil transition temperature, T(M), at atmospheric pressure. The sign of DeltaV(T) changed from negative to positive as T(M) was increased by increasing the sodium ion concentration. For poly[d(I-C)], DeltaV(T) = 0 cm(3) mol(-1), when the sodium ion concentration is such that the spectroscopically monitored T(M) = 55 degrees C at atmospheric pressure. For poly[d(A-T)], the value of DeltaV(T) = 0 under conditions such that T(M) = 47 degrees C at atmospheric pressure. Negative values of DeltaV(T) imply that the helical form is destabilized at high pressure. Under experimental conditions where the DeltaV(T) for the transition is negative, the transition could be caused by increasing the pressure under isothermal conditions. At temperatures below T(M) measured at atmospheric pressure the midpoint of the pressure-induced helix-coil transition, P(M), decreases with increasing temperature. The volume change of the pressure-induced transitions helix-coil transition, DeltaV(P), was calculated assuming a two-state model. The magnitude of DeltaV(P) (per cooperative length) was much larger than the volume change (per base pair) measured for the heat-induced transition, DeltaV(T), calculated using the Clapeyron equation. The ratio of these two volume changes was used to calculate the cooperative length for the pressure-induced transition. This parameter depends strongly on temperature, becoming greater closer to T(M) measured at atmospheric pressure. At temperatures approaching T(M) the magnitude of the cooperative length of the pressure-induced transition is approximately twice that observed for the heat-induced transition (N(T)). On the basis of the temperature dependence of the DeltaV(T) for the two polymers the coefficient of thermal expansion of the two polymers was found to be 0.17 and 0.16 cm(3) K(-1) mol(-1) for poly[d(I-C)] and poly[d(A-T)], respectively.  相似文献   

12.
The effects of oxygen-hydrogen pretreatments of nanosilver catalysts in cycle mode on the structure and particle size of silver particles, and subsequently the activity of the catalyst toward CO oxidation (or CO selective oxidation in the presence of H2), are reported in this paper. Ag/SiO2 catalyst with silver particle sizes of ca. 6 approximately 8 nm shows relatively high activity in the present reaction system. The adopting of a cycle of oxidation/reduction pretreatment has a marked influence on the activity of the catalyst. Oxygen pretreatment at 500 degrees C results in the formation of subsurface oxygen and activates the catalyst. As evidenced by in-situ XRD and TEM, the following H2 treatment at low temperatures (100 approximately 300 degrees C) causes surface faceting and redispersing of the silver particles without destroying the subsurface oxygen species. The subsequent in-situ FTIR and catalytic reaction results show that CO oxidation occurs at -75 degrees C and complete CO conversion can be obtained at 40 degrees C over such a nanosilver catalyst pretreated with oxygen at 500 degrees C followed by H2 at 100 degrees C. However, prolonged hydrogen treatment at high temperatures (>300 degrees C) after oxygen pretreatment at 500 degrees C induces the aggregation of silver particles and also depletes so much subsurface oxygen species that the pathway of CO oxidation by the subsurface oxygen species is inhibited. Meanwhile, the ability of the catalyst to adsorb reactants is greatly depressed, resulting in a 20 approximately 30% decrease in the activity toward CO oxidation. However, the activity of the catalyst pretreated with oxygen at 500 degrees C followed by hydrogen treatment at high temperatures (>300 degrees C) is still higher than that directly pretreated with H2. This kind of catalytic behavior of silver catalyst is associated with physical changes in the silver crystallites because of surface restructuring and crystallite redispersion during the course of oxygen-hydrogen pretreatment steps.  相似文献   

13.
We study in situ the kinetics of heat-induced fibrilar aggregation of bovine beta-lactoglobulin at pH 2.0 and 80 degrees C for the first time by time-resolved small-angle neutron scattering. A simple model for the scattering from a mixture of monodisperse charged spheres (monomeric beta-lactoglobulin) interacting via a screened electrostatic repulsion and noninteracting long cylinders (protein fibrils) is used to describe the data. The experimental data are fitted to the model and the concentration of the monomeric protein and the protein incorporated in fibrils are obtained as adjustable parameters. Thus, a simple physical model allows the determination of realistic kinetic parameters during fibrilar protein aggregation. This result constitutes an important step in understanding the process of irreversible fibrilar aggregation of proteins.  相似文献   

14.
The complex [Cu2(L-66)]2+ (L-66 = a,a'-bis?bis[2-(1'-methyl-2'-benzimidazolyl)ethyl]amino?-m-xylene) undergoes fully reversible oxygenation at low temperature in acetone. The optical [lambda(max) = 362 (epsilon 15000), 455 (epsilon 2000), and 550 nm (epsilon 900M(-1)cm(-1))] and resonance Raman features (760 cm(-1), shifted to 719cm(-1)(-1) with 18O2) of the dioxygen adduct [Cu2(L-66)(O2)]2+ indicate that it is a mu-eta2:eta2-peroxodicopper(II) complex. The kinetics of dioxygen binding, studied at - 78 degrees C, gave the rate constant k1 = 1.1M(-1) 5(-1) for adduct formation, and k(-1) =7.8 x 10(-5)s(-1), for dioxygen release from the Cu2O2 complex. From these values, the O2 binding constant K= 1.4 x 10(4)M(-1) at -78 degrees C could be determined. The [Cu2(L-66)(O2)]2+ complex performs the regiospecific ortho-hydroxylation of 4-carbomethoxyphenolate to the corresponding catecholate and the oxidation of 3,5-di-tert-butylcatechol to the quinone at -60 degrees C. Therefore, [Cu2(L-66)]2+ is the first synthetic complex to form a stable dioxygen adduct and exhibit true tyrosinase-like activity on exogenous phenolic compounds.  相似文献   

15.
Tranexamic acid (TA) is a synthetic antifibrinolytic agent that is being considered as a candidate adjuvant drug for site-specific pharmaco-laser therapy of port wine stains. For drug utility studies, a high-performance liquid chromatography (HPLC)-fluorescence method was developed for the quantification of TA in blood. Platelet-poor plasma was prepared, size-separated using 3kDa cut-off centrifuge filters, and derivatized with naphthalene-2-3-dicarboxaldehyde (NDA) and cyanide. The excess of NDA was quenched after 2 min by adding tryptophan. The derivatives were separated on a 2.1mm C18 column using an acetate buffer/acetonitrile gradient. Excellent separation from plasma background was obtained at pH 5.5. Quantification was carried out at 440/520 nm. The limit of detection was 0.5 microM and the mean+/-SD recovery from whole blood was 81.7+/-10.9%. Derivatized TA samples were stable for at least 36 h at 4 degrees C. The method was successfully applied to a heat-induced TA release study from thermosensitive liposomes.  相似文献   

16.
Yang G  Zhang Q  Miao H  Tong X  Xu J 《Organic letters》2005,7(2):263-266
[Reaction: see text] Purely organic and catalytic systems of anthraquinones and N-hydroxyphthalimide efficiently promote oxygenation of hydrocarbons with dioxygen under mild conditions, e.g., fluorene can be converted completely to fluorenone with 85% yield at 80 degrees C.  相似文献   

17.
In the present study, the heat-induced interaction between whey proteins and casein micelles was studied. To that end, the particle size distribution of 5.5% (w/w) casein micellar dispersions was determined by photon correlation spectroscopy as a function of both the whey protein concentration and heating time at 80 °C. The results clearly indicated that heat-induced aggregation of the casein micelles only occurred in the presence of whey proteins.

In an effort to overcome the heat-induced interactions between whey proteins and casein micelles, the influence of different soybean lecithins was investigated. Comparing native to hydrolysed, as well as hydroxylated soybean lecithin, it was observed that the heat-stabilising effect of the lecithins was directly related to their hydrophilicity: whereas native soybean lecithin had hardly any beneficial effect, highly hydrolysed as well as hydroxylated soybean lecithin largely prevented heat-induced casein micelle aggregation in the presence of whey proteins.

From experimental observations on the heat-induced decrease of whey protein solubility both in the absence and presence of hydrolysed lecithin, it was deduced that the latter may stabilise the exposed hydrophobic surface sites of heat-denatured whey proteins. Dynamic surface tension measurements indicated that the heat-stabilising properties of lecithins were mainly determined by their critical aggregation concentration.  相似文献   


18.
Metal nanoparticle-doped materials have attracted much attention because of their enhanced third-order nonlinear optical susceptibility. In their application, (1) controllable precipitation and (2) stability against photo-irradiation are essential concerns. Silver or gold nanoparticle-doped films were made from hybrid sol containing metal ions with their stabilizer on silica glass substrates by the sol-gel dip-coating technique and their heat-induced precipitation and photo-stability were investigated. The heat-induced precipitation up to 1000°C was remarkably different in Ag and Au nanoparticles. After 120–500°C heating, Ag nanoparticles with a wide range of radii were formed in the hybrid films. Above 500°C, organic groups were completely evacuated and at 800°C, mono-dispersed Ag nanoparticles with radii of 2–4 nm were precipitated in the resultant film. On the other hand, Au nanoparticles of 10 nm average radius precipitated at 120°C and showed no drastic change in subsequent heating up to 1000°C. Since Ag nanoparticle-doped film showed the photosensitive change, their photostability was investigated by irradiating them under Xenon lamp light. The 800°C-heating sample showed no decrease in the plasma absorption band at around 420 nm wavelength after 20 h light irradiation, but the band intensities in the 120–500°C-heating films decreased noticeably.  相似文献   

19.
The objective of this study was to evaluate the thermostability up to 70 degrees C for 1 h of selected enzymes present in fresh and composted sewage sludge (SS and SSC) or municipal solid wastes (MSW and MSWC) and their humic extract. After a thermal treatment at 70 degrees C, no beta-glucosidase activity in any humic extract was detected, whereas in SS, SSC, MSW, and MSWC, it was respectively, 35%, 68%, 17%, and 12% compared to thermally untreated samples. By contrast, o-diphenol oxidase activity was even stimulated by thermal treatment in SS samples, but in the humic extracts, this activity decreased by 75-81%. Urease activity in all humic extracts decreased by 70% or more just at 40 degrees C, whereas for organic wastes, this decrease was observed after treatment at 70 degrees C. Alkaline phosphatase (AP) activity was affected by thermal treatment only in MSW and MSWC. In humic extracts, AP activity decreased gradually to zero except for the MSW extract, where 45% activity was retained after treatment at 70 degrees C. In general, thermostability of enzymes in humic extracts was lower than the materials they were extracted from.  相似文献   

20.
Platinum pyrimidine greens inhibited the deoxyribonucleic acid (DNA) synthesis of tumor cells in the S phase of the cell cycle and exerted antitumor activity. Clear differences were observed in the activity between the samples prepared at 40 degrees C and at 75 degrees C. Using 3H-thymidine incorporation assay and cell cycle analysis we confirmed that the former had much stronger and more specific inhibitory activity against DNA synthesis than the latter. Reactivity of the 40 degrees C sample with deoxyguanosine monophosphate (dGMP) and deoxyadenosine monophosphate (dAMP) was, respectively, two and three times larger than that of the 75 degrees C sample.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号