首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Electrospray mass spectrometry (ESI-MS) was used to monitor the kinetics of duplex formation between the human telomeric DNA quadruplex and its complementary strand; the complexation of telomestatin to the G-quadruplex delays the unwinding of the quadruplex structure and formation of the duplex.  相似文献   

2.
G‐rich nucleic acid sequences with the potential to form G‐quadruplex structures are common in biologically important regions. Most of these sequences are present with their complementary strands, so the development of a sensitive biosensor to distinguish G‐quadruplex and duplex structures and to determine the competitive ability of quadruplex to duplex structures has received a great deal of attention. In this work, the interactions between two triphenylmethane dyes (malachite green (MG) and crystal violet (CV)) and G‐quadruplex, duplex, or single‐stranded DNAs were studied by fluorescence spectroscopy and energy‐transfer fluorescence spectroscopy. Good discrimination between quadruplexes and duplex or single‐stranded DNAs can be achieved by using the fluorescence spectrum of CV or the energy‐transfer fluorescence spectra of CV and MG. In addition, by using energy‐transfer fluorescence titrations of CV with G‐quadruplexes, the binding‐stoichiometry ratios of CV to G‐quadruplexes can be determined. By using the fluorescence titrations of G‐quadruplex–CV complexes with C‐rich complementary strands, the fraction of G‐rich oligonucleotide that engages in G‐quadruplex structures in the presence of the complementary sequence can be measured. This study may provide a simple method for discrimination between quadruplexes and duplex or single‐stranded DNAs and for measuring G‐quadruplex percentages in the presence of the complementary C‐rich sequences.  相似文献   

3.
Locked nucleic acid (LNA) is a deoxyribonucleotide analogue with an unusual ‘locked’ furanose conformation. LNA-modified oligonucleotide probes have demonstrated an enhanced binding affinity towards their complementary strands; however, their potential to discriminate non-complementary hybridization of mismatches has not been explored. In this study, we investigated the effect of the chemical nature of LNA nucleobases on the hybridization stability and the capability of LNA-modified oligonucleotides to discriminate the LNA:DNA mismatched base pairs. It was observed that LNA modification indeed improves the discrimination capability of oligonucleotides by increasing the melting temperature differences between the complementary duplexes and hybrids containing mismatches. Particularly, LNA purines offer a greater potential to recognize the mismatches than LNA pyrimidines and DNA purines. Real-time PCR experiments further confirmed that LNA modifications at the 3′-end are more effective. The results and conclusions in this study provide useful information for hybridization-based nucleic acid analysis where designing sound oligonucleotide probes is crucial to the success of the analyses.   Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

4.
Guanine (G)-rich sequences can form a noncanonical four-stranded structure known as the G-quadruplex. G-quadruplex structures are interesting because of their potential biological properties and use in nanosciences. Here, we describe a method to prepare highly stable G-quadruplexes by linking four G-rich DNA strands to form a monomolecular G-quadruplex. In this method, one strand is synthesized first, and then a trebler molecule is added to simultaneously assemble the remaining three strands. This approach allows the introduction of specific modifications in only one of the strands. As a proof of concept, we prepared a quadruplex where one of the chains includes a change in polarity. A hybrid quadruplex is observed in ammonium acetate solutions, whereas in the presence of sodium or potassium, a parallel G-quadruplex structure is formed. In addition to the expected monomolecular quadruplexes, we observed the presence of dimeric G-quadruplex structures. We also applied the method to prepare G-quadruplexes containing a single 8-aminoguanine substitution and found that this single base stabilizes the G-quadruplex structure when located at an internal position.  相似文献   

5.
We describe the first G-quadruplex targeting approach that combines intercalation and hybridization strategies by investigating the interaction of a G-rich peptide nucleic acid (PNA) acridone conjugate 1 with a three-repeat fragment of the human telomere G 3 to form a hybrid PNA-DNA quadruplex that mimicks the biologically relevant (3+1) pure DNA dimeric telomeric quadruplex. Using a combination of UV and fluorescence spectroscopy, circular dichroism (CD), and mass-spectrometry, we show that PNA 1 can induce the formation of a bimolecular hybrid quadruplex even at low salt concentration upon interaction with a single-stranded three-repeat fragment of telomeric DNA. However, PNA 1 cannot invade a short fragment of B-DNA even if the latter contains a CCC motif complementary to the PNA sequence. These studies could open up new possibilities for the design of a novel generation of quadruplex ligands that target not only the external features of the quadruplex but also its central core constituted by the tetrads themselves.  相似文献   

6.
G-rich nucleic acid oligomers can form G-quadruplexes built by G-tetrads stacked upon each other. Depending on the nucleotide sequence, G-quadruplexes fold mainly with two topologies: parallel, in which all G-tracts are oriented parallel to each other, or antiparallel, in which one or more G-tracts are oriented antiparallel to the other G-tracts. In the former topology, all glycosidic bond angles conform to anti conformations, while in the latter topology they adopt both syn and anti conformations. It is of interest to understand the molecular forces that govern G-quadruplex folding. Here, we approach this problem by examining the impact of LNA (locked nucleic acid) modifications on the folding topology of the dimeric model system of the human telomere sequence. In solution, this DNA G-quadruplex forms a mixture of G-quadruplexes with antiparallel and parallel topologies. Using CD and NMR spectroscopies, we show that LNA incorporations can modulate this equilibrium in a rational manner and we establish a relationship between incorporation of LNA nucleotides in syn and/or anti positions and the shift of the equilibrium to obtain exclusively the parallel G-quadruplex. The change in topology is driven by a combination of the C3'-endo puckering of LNA nucleotides and their preference for the anti glycosidic conformation. In addition, the parallel LNA-modified G-quadruplexes are thermally stabilised by about 11 °C relative to their DNA counterparts.  相似文献   

7.
Molecular dynamics and thermodynamic integration calculations have been carried out on a set of G-rich single-strand, duplex, triplex, and quadruplex DNAs to study the structural and stability changes connected with the guanine --> 6-thioguanine (G --> S) mutation. The presence of 6-thioguanine leads to a shift of the geometry from the B/A intermediate to the pure B-form in duplex DNA. The G --> S mutation does not largely affect the structure of the antiparallel triplex when it is located at the reverse-Hoogsteen position, but leads to a non-negligible local distortion in the structure when it is located at the Watson-Crick position. The G --> S mutation leads to destabilization of all studied structures: the lowest effect has been observed for the G --> S mutation in the reverse-Hoogsteen strand of the triplex, a medium effect has been observed in the Watson-Crick strand of the triplex and duplex, and the highest influence of the G -->S mutation has been found for the quadruplex structures.  相似文献   

8.
A series of dinuclear ruthenium(II) complexes were synthesised, and the complexes were determined to be new highly selective compounds for binding to telomeric G‐quadruplex DNA. The interactions of these complexes with telomeric G‐quadruplex DNA were studied by using circular dichroism (CD) spectroscopy, fluorescence resonance energy transfer (FRET) melting assays, isothermal titration calorimetry (ITC) and molecular modelling. The results showed that the complexes 1 , 2 and 4 induced and stabilised the formation of antiparallel G‐quadruplexes of telomeric DNA in the absence of salt or in the presence of 100 mM K+‐containing buffer. Furthermore, complexes 1 and 2 strongly bind to and effectively stabilise the telomeric G‐quadruplex structure and have significant selectivity for G‐quadruplex over duplex DNA. In comparison, complex 3 had a much lesser effect on the G‐quadruplex, suggesting that possession of a suitably sized plane for good π–π stacking with the G‐quadruplets is essential for the interaction of the dinuclear ruthenium(II) complexes with the G‐quadruplex. Moreover, telomerase inhibition by the four complexes and their cellular effects were studied, and complex 1 was determined to be the most promising inhibitor of both telomerase and HeLa cell proliferation.  相似文献   

9.
The electronic properties of double strands composed of trimeric LNA, PNA, DNA and RNA single strands were investigated by density-functional molecular orbital calculations. The computed hybridization energies for the double strands involving PNA or LNA are larger than those for DNA-DNA and RNA-RNA. The larger stability is attributed to the presence of a larger positive charge of the hydrogen atoms contributing to the hydrogen bonds in the PNA-DNA and LNA-DNA double-strands. These results are comparable to the experimental finding that PNA and LNA single strands display high affinity toward a complementary DNA or RNA single strand.  相似文献   

10.
The K(+)-H(+)-triggered structural conversion of multiple nucleic acid helices involving duplexes, triplexes, G-quadruplexes, and i-motifs is studied by gel electrophoresis, circular dichroism, and thermal denaturation. We employ the structural interconversions for perfoming molecular logic operations, as verified by fluorimetry and colorimetry. Short G-rich and C-rich cDNA and RNA single strands are hybridized to produce four A-form and B-form duplexes. Addition of K(+) triggers the unwinding of the duplexes by inducing the folding of G-rich strands into DNA- or RNA G-quadruplex mono- and multimers, respectively. We found a decrease in pH to have different consequences on the resulting structural output, depending on whether the C-rich strand is DNA or RNA: while the protonated C-rich DNA strand folds into at least two isomers of a stable i-motif structure, the protonated C-rich RNA strand binds a DNA/RNA hybrid duplex to form a Y·RY parallel triplex. When using K(+) and H(+) as external stimuli, or inputs, and the induced G-quadruplexes as reporters, these structural interconversions of nucleic acid helices can be employed for performing logic-gate operations. The signaling mode for detecting these conversions relies on complex formation between DNA or RNA G-quadruplexes (G4) and the cofactor hemin. The G4/hemin complexes catalyze the H(2)O(2)-mediated oxidation of peroxidase substrates, resulting in a fluorescence or color change. Depending on the nature of the respective peroxidase substrate, distinct output signals can be generated, allowing one to operate multiple logic gates such as NOR, INH, or AND.  相似文献   

11.
Four individual quadruplexes, which are self-assembled in ammonium acetate solution from telomeric sequences of closely related DNA strands--d(G(4)T(4)G(4)), d(G(3)T(4)G(4)), d(G(3)T(4)G(3)), and d(G(4)T(4)G(3))--have been detected in the gas phase using electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS). The bimolecular quadruplexes associate with the same number of NH(4)(+) in the gas phase as NMR shows that they do in solution. The quadruplex structures formed in solution are maintained in the gas phase. Furthermore, the mass spectra show that the bimolecular quadruplexes generated by the strands d(G(3)T(4)G(3)) and d(G(4)T(4)G(3)) are unstable, being converted into trimolecular and tetramolecular structures with increasing concentrations of NH(4)(+) in the solution. Circular dichroism (CD) spectra reveal structural changes during the process of strand stoichiometric transitions, in which the relative orientation of strands in the quadruplexes changes from an antiparallel to a parallel arrangement. Such changes were observed for the strand d(G(4)T(4)G(3)), but not for the strand d(G(3)T(4)G(3)). The present work provides a significant insight into the formation of various DNA quadruplexes, especially the higher-order species.  相似文献   

12.
13.
The rigid dinuclear [(tap)2Ru(tpac)Ru(tap)2]4+ complex ( 1 ) (TAP=1,4,5,8‐tetraazaphenanthrene, TPAC=tetrapyridoacridine) is shown to be much more efficient than the mononuclear bis‐TAP complexes at photodamaging oligodeoxyribonucleotides (ODNs) containing guanine (G). This is particularly striking with the G‐rich telomeric sequence d(T2AG3)4. Complex 1 , which interacts strongly with the ODNs as determined by surface plasmon resonance (SPR) and emission anisotropy experiments, gives rise under illumination to the formation of covalent adducts with the G units of the ODNs. The yield of photocrosslinking of the two strands of duplexes by 1 is the highest when the G bases of each strand are separated by three to four base pairs. This corresponds with each Ru(tap)2 moiety of complex 1 forming an adduct with the G base. This separation distance of the G units of a duplex could be determined thanks to the rigidity of complex 1 . On the basis of results of gel electrophoresis, mass spectrometry, and molecular modelling, it is suggested that such photocrosslinking can also occur intramolecularly in the human telomeric quadruplex d(T2AG3)4.  相似文献   

14.
Locked nucleic acids (LNAs) containing one or more 2'-O,4'-C-methylene-linked bicyclic ribonucleoside monomers possess a number of the prerequisites of an effective antisense oligonucleotide, e.g. unprecedented helical thermostability when hybridized with cognate RNA and DNA. To acquire a detailed understanding of the structural features of LNA giving rise to its remarkable properties, we have conducted structural studies by use of NMR spectroscopy and now report high-resolution structures of two LNA:RNA hybrids, the LNA strands being d(5'-CTGAT(L)ATGC-3') and d(5'-CT(L)GAT(L)AT(L)GC-3'), respectively, T(L) denoting a modified LNA monomer with a thymine base, along with the unmodified DNA:RNA hybrid. In the structures, the LNA nucleotides are positioned as to partake in base stacking and Watson-Crick base pairing, and with the inclusion of LNA nucleotides, we observe a progressive change in duplex geometry toward an A-like duplex structure. As such, with the inclusion of three LNA nucleotides, the hybrid adopts an almost canonical A-type duplex geometry, and thus it appears that the number of modifications has reached a saturation level with respect to structural changes, and that further incorporations would furnish only minute changes in the duplex structure. We attempt to rationalize the conformational steering induced by the LNA nucleotides by suggesting that the change in electronic density at the brim of the minor groove, introduced by the LNA modification, is causing an alteration of the pseudorotational profile of the 3'-flanking nucleotide, thus shifting this sugar equilibrium toward N-type conformation.  相似文献   

15.
Nucleic acid molecules may fold into secondary structures, and the formation of such structures is involved in many biological processes and technical applications. The folding and unfolding rate constants define the kinetics of conformation interconversion and the stability of these structures and is important in realizing their functions. We developed a method to determine these kinetic parameters using an optical biosensor based on surface plasmon resonance. The folding and unfolding of a nucleic acid is coupled with a hybridization reaction by immobilization of the target nucleic acid on a sensor chip surface and injection of a complementary probe nucleic acid over the sensor chip surface. By monitoring the time course of duplex formation, both the folding and unfolding rate constants for the target nucleic acid and the association and dissociation rate constants for the target-probe duplex can all be derived from the same measurement. We applied this method to determine the folding and unfolding rate constants of the G-quadruplex of human telomere sequence (TTAGGG)(4) and its association and dissociation rate constants with the complementary strand (CCCTAA)(4). The results show that both the folding and unfolding occur on the time scale of minutes at physiological concentration of K(+). We speculate that this property might be important for telomere elongation. A complete set of the kinetic parameters for both of the structures allows us to study the competition between the formation of the quadruplex and the duplex. Calculations indicate that the formation of both the quadruplex and the duplex is strand concentration-dependent, and the quadruplex can be efficiently formed at low strand concentration. This property may provide the basis for the formation of the quadruplex in vivo in the presence of a complementary strand.  相似文献   

16.
We have used NMR and CD spectroscopy to study the conformations of modified oligonucleotides (locked nucleic acid, LNA) containing a conformationally restricted nucleotide (T(L)) with a 2'-O,4'-C-methylene bridge. We have investigated two LNA:RNA duplexes, d(CTGAT(L)ATGC):r(GCAUAUCAG) and d(CT(L)GAT(L)AT(L)GC):r(GCAUAUCAG), along with the unmodified DNA:RNA reference duplex. Increases in the melting temperatures of +9.6 degrees C and +8.1 degrees C per modification relative to the unmodified duplex were observed for these two LNA:RNA sequences. The three duplexes all adopt right-handed helix conformations and form normal Watson-Crick base pairs with all the bases in the anti conformation. Sugar conformations were determined from measurements of scalar coupling constants in the sugar rings and distance information derived from 1H-1H NOE measurements; all the sugars in the RNA strands of the three duplexes adopt an N-type conformation (A-type structure), whereas the sugars in the DNA strands change from an equilibrium between S- and N-type conformations in the unmodified duplex towards more of the N-type conformation when modified nucleotides are introduced. The presence of three modified T(L) nucleotides induces drastic conformational shifts of the remaining unmodified nucleotides of the DNA strand, changing all the sugar conformations except those of the terminal sugars to the N type. The CD spectra of the three duplexes confirm the structural changes described above. On the basis of the results reported herein, we suggest that the observed conformational changes can be used to tune LNA:RNA duplexes into substrates for RNase H: Partly modified LNA:RNA duplexes may adopt a duplex structure between the standard A and B types, thereby making the RNA strand amenable to RNase H-mediated degradation.  相似文献   

17.
Oligonucleotide chemistry has been developed greatly over the past three decades, with many advances in increasing nuclease resistance, enhancing duplex stability and assisting with cellular uptake. Locked nucleic acid (LNA) is a structurally rigid modification that increases the binding affinity of a modified-oligonucleotide. In contrast, unlocked nucleic acid (UNA) is a highly flexible modification, which can be used to modulate duplex characteristics. In this tutorial review, we will compare the synthetic routes to both of these modifications, contrast the structural features, examine the hybridization properties of LNA and UNA modified duplexes, and discuss how they have been applied within biotechnology and drug research. LNA has found widespread use in antisense oligonucleotide technology, where it can stabilize interactions with target RNA and protect from cellular nucleases. The newly emerging field of siRNAs has made use of LNA and, recently, also UNA. These modifications are able to increase double-stranded RNA stability in serum and decrease off-target effects seen with conventional siRNAs. LNA and UNA are also emerging as versatile modifications for aptamers. Their application to known aptamer structures has opened up the possibility of future selection of LNA-modified aptamers. Each of these oligonucleotide technologies has the potential to become a new type of therapy to treat a wide variety of diseases, and LNA and UNA will no doubt play a part in future developments of therapeutic and diagnostic oligonucleotides.  相似文献   

18.
L-DNA, the mirror image of natural DNA forms structures of opposite chirality. We demonstrate here that a short guanine rich L-DNA strand forms a tetramolecular quadruplex with the same properties as a D-DNA strand of identical sequence, besides an inverted circular dichroism spectra. L- and D-strands self exclude when mixed together, showing that the controlled parallel self-assembly of different G-rich strands can be obtained through L-DNA use.  相似文献   

19.
20.
Telomeres at the ends of human chromosomes contain the repeating sequence 5'-d[(TTAGGG)(n)]-3'. Oxidative damage of guanine in DNAs that contain telomeric and nontelomeric sequence generates 7,8-dihydro-8-oxoguanine (8OG) preferentially in the telomeric segment, because GGG sequences are more reactive in duplex DNA. We have developed a general strategy for probing site-specific oxidation reactivity in diverse biological structures through substitution of minimally modified building blocks that are more reactive than the parent residue, but preserve the parent structure. In this study, 8OG was substituted for guanine at G(8), G(9), G(14), or G(15) in the human telomeric oligonucleotide 5'-d[AGGGTTAG(8)G(9)GTT AG(14)G(15)GTTAGGGTGT]-3'. Replacement of G by 8OG in telomeric DNA can affect the formation of intramolecular G quadruplexes, depending on the position of substitution. When 8OG was incorporated in the 5'-position of a GGG triplet, G quadruplex formation was observed; however, substitution of 8OG in the middle of a GGG triplet produced multiple structures. A clear correspondence between structure and reactivity was observed when oligonucleotides containing 8OG in the 5'-position of a GGG triplet were prepared in the quadruplex or duplex forms and interrogated by mediated electrocatalytic oxidation with Os(bpy)(3)(2+) (bpy = 2,2'-bipyridine). The rate constant for one-electron oxidation of a single 8OG in the 5'-position of a GGG triplet was (6.2 +/- 1.7) x 10(4) M(-1) s(-1) in the G quadruplex form. The rate constant was 2-fold lower for the same telomeric sequence in the duplex form ((3.0 +/- 1.3) x 10(4) M(-1) s(-1)). The position of 8OG in the GGG triplet affects telomerase activity and synthesis of telomeric repeat products. Telomerase activity was decreased significantly when 8OG was substituted in the 5'-position of the GGG triplet, but not when 8OG was substituted in the middle of the triplet. Thus, biological oxidation of G to 8OG in telomeres has the potential to modulate telomerase activity. Further, small molecules that inhibit telomerase by stabilizing telomeric G quadruplexes may not be as effective under oxidative stress.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号