共查询到11条相似文献,搜索用时 78 毫秒
1.
烃燃烧反应机理探讨 总被引:9,自引:3,他引:9
高志崇 《辽宁大学学报(自然科学版)》2002,29(3):266-271
由于光是一种有序的能量,因而光是一种非体积功(W′),根据公式△H=W′-0.1196n/λ计算了乙炔和丙烷燃烧反应的火焰温度,提出了烃燃烧反应机理,该机理为;第一步,氧气吸收光子形成游离态氧原子,每摩尔氧气吸收1摩尔光子;第二步,烃裂解形成碳和氢气,该步骤既不吸收光子,也不发出光子;第三步,氢气与游离态氧原子作用生成水,每生成1mol水发出1mol光子;第四步,碳与游离态氧原子作用生成CO,每生成1molCO发出1mol光子;第五步,CO与氧分子作用生成CO2,该步骤既不吸收光子,也不发出光子。 相似文献
2.
利用公式△H=-0.119 6n/λ计算了H_2在F_2内燃烧反应的理论火焰温度.当反应物温度为400 K时,其理论火焰温度为4 354 K,与实际温度3 962 K较为接近,根据火焰温度,提出了H_2在F_2内燃烧反应的机理,该机理为:(1)F_2+hv→2F·,(2)H_2+2F·→2HF+2hv, 相似文献
3.
利用公式ΔH=-0.1196n λ计算了乙炔在NO中燃烧反应的火焰温度,计算值为3587K,与实际温度3368K非常接近.根据火焰温度,提出了乙炔在NO中燃烧反应的机理.该机理为:(1)NO+hν→N·+O·,(2)N·+NO→N2+O·,(3)C2H2→2C+H2,(4)H2+O·→H2O+hν,(5)C+O·→CO+hν,(6)CO+O·→CO2+hν. 相似文献
4.
利用公式△H=-0.1196n/A计算了乙醚和丙酮分别在氧气和空气中燃烧反应的温度,并推测了乙醚和丙酮燃烧反应的机理.乙醚在氧气中燃烧反应的火焰温度理论值为3272K,与测定温度3134K接近,误差为4.40%.丙酮在空气中燃烧反应的火焰温度理论值为1292K,与测定温度173K接近,误差为1.49%.根据乙醚和丙酮燃烧反应的火焰温度,推测乙醚和丙酮燃烧反应机理为:(1)O2+hv→2O·;(2)(C2H5)2O→4C+4H2+H2O(乙醚),CH3COCH3→3C+2H2+H2O(丙酮);(3)H2+O·→H2O+hv;(4)C+O·→CO+hv;(5)2CO+O2→2CO2. 相似文献
5.
本文利用公式ΔH=-0.1196n λ计算了H2在N2O内燃烧反应的火焰温度,计算值为3197K,与实际温度2923K较为接近.根据火焰温度,提出了H2在N2O内燃烧反应的机理,该机理为:(1)2N2O→N2 2NO;(2)NO hv→N· O;(3)N· NO→N2 O·;(4)H2 O·→H2O hv. 相似文献
6.
利用公式△H=-0.1196n/λ计算了S、H2S及CS2在氧气中燃烧反应的火焰温度,并推测了三种物质燃烧反应的机理.S在氧气中燃烧反应的火焰温度计算值为2086 K,与测定值2093K接近,误差为-0.30%.H2S在氧气中燃烧反应的火焰温度计算值为2238K,测定温度2383K,误差为-6.1%.CS2在氧气中燃烧反应的火焰温度计算值为2502K,测定温度2468K,误差为0.14%.根据燃烧反应的火焰温度,推测S、H2S及CS2在氧气中燃烧反应机理.S燃烧反应机理为:(1)O2+ hv→2O·,(2)S +O·→SO+hv,(3)2SO+O2→2SO2,(4)SO2+O·→SO3 +hv.H2S燃烧反应机理为:(1)O2+ hv→2O·,(2) H2S→H2 +S,(3)H2 +O·→H2O+hv,(4)S+O·→SO+hv,(5) 2SO+ O2→2SO2,(6)SO2 +O·→SO3+ hv.CS2燃烧反应机理为:(1)O2+hv→2O·,(2) CS2→C +2S,(3)C+O·→CO+ hv,(4)CO+O·→CO+hv,(5)S+O·→SO+ hv,(6)2SO+ O2→2SO2,(7)SO2+O·→SO3+ hv. 相似文献
7.
甲烷燃烧反应的火焰温度 总被引:3,自引:0,他引:3
高志崇 《山西大学学报(自然科学版)》2004,27(1):32-34
根据公式ΔH=W′=-0.1196n/λ计算了甲烷燃烧反应的火焰温度,计算温度为3134K,与实际温度3120K非常接近.这进一步明确了烃燃烧反应机理,该机理为:(1)O2+hν2O·;(2)CpH2qpC+qH2;(3)H2+O·H2O+hν;(4)C+O·CO+hν;(5)2CO+O22CO2. 相似文献
8.
燃烧反应火焰温度的探讨 总被引:4,自引:2,他引:4
高志崇 《聊城大学学报(自然科学版)》2001,14(1):57-60
由于光是一种有序的能量,因而作者认为燃烧反应发出的光子的能量也是体系对环境作的一种非体积功W′.根据热力学第一定律推导出,燃烧反应的反应焓△H与光子能量E之间的关系是△H=-nEm=-0.119 6n/λ.根据公式计算得的H2、CO和C2H2燃烧的火焰温度分别为2894 K、1 625 K和3 804 K,这与它们各自的实际温度2 773~3 273 K、1 673 K和3 773 K非常接近.另外,作者还说明了如何根据反应机理确定有机物燃烧时发出的光子的量. 相似文献
9.
计算了水煤气和焦炉气燃烧反应的火焰温度,进一步明确氢气和烃燃烧反应的机理.氢燃烧反应的机理为:(1)O2 hv→2O·,(2)H2 O·→H2O hv;烃燃烧反应的机理为:(1)O2 hv→2O·,(2)CpH2q→pC qH2,(3)H2 O·→H2O hv,(4)C O·→CO hv,(5)2CO O2→2CO2. 相似文献
10.
根据火焰中热量和碳颗粒的生成规律及其通风影响,提出了适用于两种燃烧状况的聚合物燃烧火焰辐射近似模型。针对几种典型聚合物计算了其火焰辐射放热分数和火焰平均辐射温主,讨论了通风条件、燃料组成,炭颗粒生成和燃烧尺度的影响。 相似文献
11.
氢气超声速燃烧过程的多步简化反应机理数值模拟 总被引:1,自引:0,他引:1
为了减少燃烧试验次数和改进超燃冲压发动机结构设计,采用大型模拟软件Fluent,对氢气和空气在超燃冲压发动机内的超声速流动与燃烧过程进行数值模拟。首先对空气和燃料在发动机中的冷混流动进行模拟,然后分别采用一步总包或多步简化化学反应机理,模拟超声速燃烧过程。结果显示,采用一步总包反应机理时,燃料点火容易,得到的燃烧效率也比较高,但是得到的温度偏高;采用多步简化反应机理,不容易点火,模拟过程中火焰易灭,模拟所需要的时间也比较长,但得到的流场与实验过程更接近。 相似文献