共查询到20条相似文献,搜索用时 15 毫秒
1.
The binding specificity of silver cations to abasic (AP) site-containing DNA was electrochemically investigated by comparison with the fully matched DNA without the AP site. AP site-containing DNA is designed in a way that only the nucleotide opposite the AP site is variable to allow for coexistence of an unpaired nucleotide and a number of DNA base pairs. The surface of a gold electrode was modified by AP site-containing DNA duplex on which Ag+ binding specificity was evaluated. Electrochemical investigations on the AP-DNA-modified electrodes reveal that Ag+ preferentially associates to the unpaired nucleotides instead of the coexisted base pairs and shows sequence-dependant binding, especially stronger for purines than for pyrimidines. Additionally, the hydrogen bond pattern moieties of the unpaired nucleotides should be involved in Ag+ binding evidenced by a decrease of the redox signal when introducing a ligand with its hydrogen bond moiety complementary to the nucleotide deoxycytidine. This is the first attempt to make a comparison in one DNA molecule for metal ion binding to coexisted unpaired nucleotide and DNA base pairs. The present method demonstrates an easy way for investigating binding specificity of heavy metal ions to AP site in the presence of coexisted DNA base pairs. 相似文献
2.
Morita K Sankaran NB Huang W Seino T Sato Y Nishizawa S Teramae N 《Chemical communications (Cambridge, England)》2006,(22):2376-2378
An abasic site-containing DNA combined with lumiflavin allows amperometric determination of single nucleotide polymorphism through hydrogen bond-mediated nucleobase recognition in water by using abasic sites as a molecular recognition field. 相似文献
3.
Label-free DNA nucleobase recognition by fluorescent small molecules has received much attention due to its simplicity in mutation identification and drug screening. However, sequence-dependent fluorescence light-up nucleobase recognition and multicolor emission with individual emission energy for individual nucleobases have been seldom realized. Herein, an abasic site (AP site) in a DNA duplex was employed as a binding field for berberine, one of isoquinoline alkaloids. Unlike weak binding of berberine to the fully matched DNAs without the AP site, strong binding of berberine to the AP site occurs and the berberine's fluorescence light-up behaviors are highly dependent on the target nucleobases opposite the AP site in which the targets thymine and cytosine produce dual emission bands, while the targets guanine and adenine only give a single emission band. Furthermore, more intense emissions are observed for the target pyrimidines than purines. The flanking bases of the AP site also produce some modifications of the berberine's emission behavior. The binding selectivity of berberine at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, excited-state lifetime, DNA melting and fluorescence quenching by ferrocyanide and sodium chloride. It is expected that the target pyrimidines cause berberine to be stacked well within DNA base pairs near the AP site, which results in a strong resonance coupling of the electronic transitions to the particular vibration mode to produce the dual emissions. The fluorescent signal-on and emission energy-modulated sensing for nucleobases based on this fluorophore is substantially advantageous over the previously used fluorophores. We expect that this approach will be developed as a practical device for differentiating pyrimidines from purines by positioning an AP site toward a target that is available for readout by this alkaloid probe. 相似文献
4.
Qinghua Cui Kun Ma Yong Shao Shujuan Xu Fei Wu Guiying Liu Norio Teramae Haifeng Bao 《Analytica chimica acta》2012
Silver nanoclusters (Ag NCs) templated with DNAs have attracted much attention as novel fluorophores because of their convenient emission tunability by the sequence and length of the template DNAs. However, the precise production of Ag NCs in a site-specific manner still remains a challenge to attain highly selective and label-free DNA recognition. Here we exploited the availability of a gap site in DNA duplexes as a new scaffold for the synthesis of Ag NCs. Compared to the commonly used DNA templates for the creation of Ag NCs, the gap site in DNA duplexes was found to facilitate the rapid formation of the fluorescent Ag NCs without sacrifice of their bright emission and excellent stability. We found that fluorescent Ag NCs were highly selectively formed when cytosine faced toward the gap site in DNA duplexes, and they were in situ utilized as readout by signal-on manner for the DNA mutation assays. This base-selective growth of the fluorescent Ag NCs at the gap site would find promising applications in practical detection of single nucleotide polymorphism (SNP) and construction of DNA-based functional sensors with label-free and cost-effective merits. 相似文献
5.
《Arabian Journal of Chemistry》2022,15(9):104050
RNA plays a crucial role in biochemical processes. RNAs with abasic sites (AP-RNA), as one of RNA lesions, will cause serious negative consequences. Efficient and sensitive detection of AP-RNA deserves but does not receive enough attention. Water-soluble uridine triphosphate (UTP)-capped Mn-doped ZnS quantum dots (QDs), which have excellent room-temperature phosphorescence (RTP) properties, were prepared by wet-chemical method. The UTP on the surface of QDs could form a precipitation complex with amiloride (AMI) to quench the RTP. Meanwhile, abasic double-stranded RNA (AP-dsRNA) with a high affinity to AMI could dissociate AMI from the surface of UTP-QDs, resulting in RTP recovery. In this process, a highly sensitive and selective RTP-detection system for AP-dsRNA was constructed with AMI as the modulation factor and UTP-QDs as the luminescence matrix. RTP was turned off and on for the determination of AP-dsRNA, and the interference of background fluorescence and scattered light was effectively avoided during complex formation and aggregation. Steric hindrance of the conformation of AP-dsRNA provided efficient selectivity. The detection limit for AP-dsRNA was 0.86 nM, the relative standard deviation was 2.1%, and the recovery of biological samples with AP-dsRNA addition ranged from 95% to 103% at optimal conditions. The system is expected to provide new methods for environmental monitoring, early disease screening, and evaluation of gene editing efficiency. 相似文献
6.
Time-dependent Stokes shift (TDSS) responses in proteins and DNA exhibit a broad range of long time scales (>10 ps) that are not present in bulk aqueous solution. The physical interpretation of the long TDSS time scales in biomolecular systems is a matter of considerable debate because of the many different components present in the sample (water, biomolecule, counterions), which have highly correlated motions and intrinsically different abilities to adapt to local perturbations. Here we use molecular dynamics (MD) simulations to show that the surprisingly slow (~10 ns) TDSS response of coumarin 102 (C102), a base pair replacement, reflects a distinct dynamical signature for DNA damage. When the C102 molecule is covalently incorporated into DNA, an abasic site is created on the strand opposite the C102 probe. The abasic sugar exhibits a reversible interchange between intra- and extrahelical conformations that are kinetically stable on a nanosecond time scale. This conformational change, only possible in damaged DNA, was found to be responsible for the long time scales in the measured TDSS response. For the first time, a TDSS measurement has been attributed to a specific biomolecular motion. This finding directly contradicts the prevailing notion that the TDSS response in biomolecular contexts is dominated by hydration dynamics. It also suggests that TDSS experiments can be used to study ultrafast biomolecular dynamics that are inaccessible to other techniques. 相似文献
7.
Six new unnatural nucleobases have been synthesized and characterized in terms of stability and selectivity of self-pairing in duplex DNA and efficiency and fidelity of self-pairing during polymerase-mediated replication. Each nucleobase has a conserved ring structure but differs from the others in its specific pattern of substitution with oxygen and sulfur atoms. Heteroatom derivatization within the conserved scaffold is shown to have only moderate effects on unnatural self-pair synthesis by the polymerase; larger effects were observed on the thermal stability and polymerase-mediated extension of the self-pairs. The largest effects of heteroatom substitution were on the stability and synthesis of mispairs between the unnatural and natural bases. Certain heteroatom substitutions were found to have a general effect while others were found to have effects that were specific for a particular unnatural or natural base. The data are useful for designing stable and replicable third base pairs and for understanding the contributions of nucleobase shape, polarity, and polarizability to the stability and replication of DNA. 相似文献
8.
Chunxia Zhao Arivazhagan Rajendran Qing Dai Seiichi Nishizawa Norio Teramae 《Analytical sciences》2008,24(6):693-695
A fluorescent pyrazine derivative, 3,5-diamino-6-chloro-2-pyrazine carbonitrile (DCPC), is presented as a promising light-up ligand for single-nucleotide polymorphisms (SNPs) typing. In solutions buffered to pH 7.0 (I = 0.11 M, at 5 degrees C), DCPC can bind to thymine selectively over other nucleobases opposite an abasic site in DNA duplexes (5'-GTGTG CGTTG ANA TGGAC GCAGA-3'/3'-CACAC GCAAC TXT ACCTG CGTCT-5', X = abasic site, N = target nucleotide) with a dissociation constant of 2.6 microM. The binding of DCPC is accompanied by a significant enhancement of its fluorescence (lambda(max), 412 nm), and the response is highly selective to thymine base. These binding and sensing properties allow a clear detection of thymine-related mutations present in polymerase chain reaction (PCR) amplification products. 相似文献
9.
Leila Ayadi Damien Forget Alain Martelli Jean-François Constant Martine Demeunynck Christian Coulombeau 《Theoretical chemistry accounts》2000,104(3-4):284-289
We use molecular modeling calculations to study the structure and the flexibility of abasic (AP sites) and for the design
of anticancer drugs targeted against AP sites. For either adenine or cytosine on the opposing strand within the same sequence
context, the results are in line with experimental data which show that the two unpaired bases lead to intrahelical forms,
but with differences in induced curvature. Results on flexibility, indicate that the two duplexes have the same bending rigidity
for cytosine. In previous work a series of polyfunctional molecules, such as ATAc, were designed to selectively recognize
and cleave abasic sites in DNA. The nitrobenzamide group which was added to the ATAc molecule to obtain a new molecule, termed
ATAc4, can induce a second lesion under irradiation in close proximity to the abasic site. The different conformations of
ATAc4 interacting with a DNA oligomer containing a stable analog of the abasic site were compared to the photoinduced cleavage
pattern observed experimentally.
Received: 16 September 1999 / Accepted: 3 February 2000 / Published online: 12 May 2000 相似文献
10.
Har Mohindra Chawla Jyotsna Rani Kar Weqar Ahmad Siddiqui Naresh Kumar David StC Black 《Tetrahedron letters》2014
A novel calix[4]arene linked nucleobase molecular receptor bearing two adenine moieties has been synthesized and characterized by UV, IR, NMR and ESI–MS analyses. The synthesized receptor can recognize biologically important Zn2+ and Mn2+ ions through 1:1 binding stoichiometry. The evaluation of binding constants suggests that adenine alone, in an appropriate supramolecular network, can exhibit efficient binding for Zn2+ ions without the presence of any phosphate or sugar unit. 相似文献
11.
12.
DNA polyhedra are artificial cage-like architectures based on interlocked and interlinked DNA double-strands. Using fewer strands to construct DNA cages shows an important role in the design of single-stranded DNA molecules. However, construction methods for DNA polyhedra from topological perspective remains not well understood. In this study, we theoretically propose an assembling strategy for DNA polyhedra with minimum strands based on computer algorithm. The results show that this efficient method could search DNA polyhedra with fewer strands faster. Our research provides new insights into design and synthesis for DNA polyhedra with required topological structures. 相似文献
13.
14.
DNA single-nucleotide polymorphism (SNP) detection has attracted much attention due to mutation-related diseases. Various fluorescence methods for SNP detection have been proposed and many are already in use. However, fluorescence enhancement for signal-on SNP identification without label modification still remains a challenge. Here, we find that the abasic site (AP site) in a DNA duplex can be developed as a binding pocket favorable for the occurrence of the excited-state intramolecular proton transfer (ESIPT) of a 3-hydroxyflavone, fisetin, which is used as a proof of concept for effective SNP identification. Fisetin binding at the AP site is highly selective for target thymine or cytosine facing the AP site by observation of a drastic increase in the ESIPT emission band. In addition, the target recognition selectivity based on this ESIPT process is not affected by flanking bases of the AP site. The binding selectivity of fisetin at the AP site is also confirmed by measurements of fluorescence resonance energy transfer, emission lifetime and DNA melting. The fluorescent signal-on sensing for SNP based on this fluorophore is substantially advantageous over the previously used fluorophores such as the AP site-specific signal-off organic ligands with a similar fluorescing mechanism before and after binding to DNA with hydrogen bonding interaction. We expect that this approach will be employed to develop a practical SNP detection method by locating an AP site toward a target and employing an ESIPT probe as readout. 相似文献
15.
Hentschel S Alzeer J Angelov T Schärer OD Luedtke NW 《Angewandte Chemie (International ed. in English)》2012,51(14):3466-3469
The missing linking: BCNU is a chemotherapy drug that generates an ethylene bridge between N(1) of deoxyguanosine and N(3) of deoxycytidine. No synthesis of a DNA containing this moiety has been reported until now. A new strategy uses a photocaged nucleobase that, when released, generates a highly reactive intermediate which cross-links the opposing DNA strand in a manner analogous to BCNU (see scheme, NBOC=ortho-nitrobenzyloxycarbonyl). 相似文献
16.
17.
Detecting short RNA strands with high fidelity at any of the bases of their sequence, including the termini, can be challenging, since fraying, wobbling, and refolding all compete with canonical base pairing. We performed a search for 5'-substituents of oligodeoxynucleotides that increase base pairing fidelity at the terminus of duplexes with RNA target strands. From a total of over 70 caps, differing in stacking moiety and linker, a phosphodiester-linked sequence of the residues of L-prolinol, glycine, and oxolinic acid, dubbed ogOA, was identified as a 5'-cap that stabilizes any of the four canonical base pairs, with ΔT(m) values of up to +13.1 °C for an octamer. At the same time, the cap increases discrimination against any of the 12 possible terminal mismatches, including mismatches that are more stable than their perfectly matched counterparts in the control duplex, such as A:A. A probe with the cap also showed increased selectivity in the detection of two closely related microRNAs, let7c and let7a, with a ΔT(m) value of 9.2 °C. Melting curves also yielded thermodynamic data that shed light on the uniformity of molecular recognition in the sequence space of DNA:DNA and DNA:RNA duplexes. Hybridization probes with fidelity-enhancing caps should find applications in the individual and parallel detection of biologically active RNA species. 相似文献
18.
Boman FC Musorrafiti MJ Gibbs JM Stepp BR Salazar AM Nguyen ST Geiger FM 《Journal of the American Chemical Society》2005,127(44):15368-15369
Second harmonic generation (SHG) is used to study oligonucleotides at aqueous/solid interfaces for the first time. Detailed thermodynamic state information for interfacial DNA single strands, namely, the interfacial charge density, the interfacial potential, and the change in the interfacial energy density, is obtained. The phosphate groups on the DNA backbone serve as intrinsic labels that do not require DNA modification other than surface attachment. This approach is broadly applicable for the investigation of DNA during its interaction with biological targets, as well as charged biopolymers in general, and has important implications for predicting and controlling macromolecular interactions, improving biodiagnostics, and understanding life processes. 相似文献
19.
Berger M Luzzi SD Henry AA Romesberg FE 《Journal of the American Chemical Society》2002,124(7):1222-1226
In an effort to develop an orthogonal third base pair for the storage of genetic information, thiophene and furan heterocycles have been examined as nucleobase analogues. The stability of the unnatural bases was evaluated in duplex DNA paired opposite other unnatural bases as well as opposite the natural bases. Several unnatural base pairs are identified that are both reasonably stable and strongly selective against mispairing with native bases. These results expand the potential nucleobase analogues with which the genetic alphabet may be expanded to include five-membered-ring heterocycles. 相似文献