首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
This work presents the benefits of coupling techniques such as Electro Thermal Vaporisation (ETV)-ICP-MS and Ion Chromatography (IC)-ICP-(AES, MS) for ultra trace analysis in a high purity rhenium powder sample. Direct analysis using ICP-AES suffers from poor detection limits and allows trace analysis only above 1 g/g for most analytes. ICP-MS analysis of trace elements is more sensitive, but signal depression caused by the heavy Re-ions limits trace analysis to concentrations of 50–100 ng/g analyte in the solid sample. Coupling Ion Chromatography with ICP-spectrometers, combined with time resolved measurement (IC-ICP-TRM) of the elution signals, was used to enhance the sensitivity of both ICP-AES and ICP-MS. Resulting detection limits are in the very low ng/g to pg/g range. Coupling of ETV and ICP-MS offers the possibility of eliminating the volatile Re2O7 matrix by thermal pretreatment and allows ICP-MS measurements without matrix interferences caused by Re. Results from these methods are compared with Glow Discharge Mass Spectrometry (GDMS) analysis, a semiquantitative solid state technique. The results are also compared with the manufacturers' specifications to show the power of modern routine analysis using ICP-AES or FAAS.  相似文献   

2.
Inductively coupled plasma mass spectrometry (ICP-MS) and laser ablation ICP-MS (LA-ICP-MS) have been applied as the most important inorganic mass spectrometric techniques having multielemental capability for the characterization of solid samples in materials science. ICP-MS is used for the sensitive determination of trace and ultratrace elements in digested solutions of solid samples or of process chemicals (ultrapure water, acids and organic solutions) for the semiconductor industry with detection limits down to sub-picogram per liter levels. Whereas ICP-MS on solid samples (e.g. high-purity ceramics) sometimes requires time-consuming sample preparation for its application in materials science, and the risk of contamination is a serious drawback, a fast, direct determination of trace elements in solid materials without any sample preparation by LA-ICP-MS is possible. The detection limits for the direct analysis of solid samples by LA-ICP-MS have been determined for many elements down to the nanogram per gram range. A deterioration of detection limits was observed for elements where interferences with polyatomic ions occur. The inherent interference problem can often be solved by applying a double-focusing sector field mass spectrometer at higher mass resolution or by collision-induced reactions of polyatomic ions with a collision gas using an ICP-MS fitted with collision cell. The main problem of LA-ICP-MS is quantification if no suitable standard reference materials with a similar matrix composition are available. The calibration problem in LA-ICP-MS can be solved using on-line solution-based calibration, and different procedures, such as external calibration and standard addition, have been discussed with respect to their application in materials science. The application of isotope dilution in solution-based calibration for trace metal determination in small amounts of noble metals has been developed as a new calibration strategy. This review discusses new analytical developments and possible applications of ICP-MS and LA-ICP-MS for the quantitative determination of trace elements and in surface analysis for materials science.  相似文献   

3.
Nowadays much attention is being paid to the determination of trace amounts of noble metals in geological, industrial, biological and environmental samples. The most promising techniques, such as inductively coupled plasma atomic emission spectrometry (ICP-AES), inductively coupled plasma mass spectrometry (ICP-MS) and electrothermal atomic absorption spectrometry (ETAAS) are characterized by high sensitivity. However, the accurate determination of trace noble metals has been limited by numerous interferences generated from the presence of matrix elements. To decrease, or eliminate, these interferences, the sorption preconcentration of noble metals is often used prior to their instrumental detection. A great number of hyphenated methods of noble metal determination using sorption preconcentration have been developed. This review describes the basic types of available sorbents, preconcentration procedures and preparations of the sorbent to the subsequent determination of noble metals. The specific features of instrumental techniques and examples of ETAAS, FAAS, ICP-AES, ICP-MS determinations after the sorption preconcentration of noble metals are considered. The references cited here were selected mostly from the period 1996 - 2006.  相似文献   

4.
The determination of trace elements in fossil fuels is of primary importance to achieve correct evaluation of environmental impact of power plants. The characterization of coals and fuel oils can be carried out by several analytical techniques such as ICP-MS, FI-HG-AAS, ETA-AAS, ICP-AES and XRF. The accuracy of the analysis, done to routine basis, can be systematically checked by means of the reference materials available or comparing the results obtained by different techniques. Quality control activities in the field of trace element determination in fossil fuels (coal and fuel oil) are described. The determination of As, Hg and Se in coals was carried out by different techniques (NAA, FI-HG-AAS and FI-ICP-MS) together with the determination of several trace metals in residual fuel oils by NAA, ETA-AAS and ICP-MS. The use of certified reference materials in order to check the accuracy of procedures is discussed and the results obtained for NIST 1632a and NIST 1632b (coal samples) and NIST 1634b and NIST 1619 (fuel oil samples) are reported.  相似文献   

5.
Elemental wine analysis is often required from a nutritional, toxicological, origin and authenticity point of view. Inductively coupled plasma based techniques are usually employed for this analysis because of their multi-elemental capabilities and good limits of detection. However, the accurate analysis of wine samples strongly depends on their matrix composition (i.e. salts, ethanol, organic acids) since they lead to both spectral and non-spectral interferences. To mitigate ethanol (up to 10% w/w) related matrix effects in inductively coupled plasma atomic emission spectrometry (ICP-AES), a microwave-based desolvation system (MWDS) can be successfully employed. This finding suggests that the MWDS could be employed for elemental wine analysis. The goal of this work is to evaluate the applicability of the MWDS for elemental wine analysis in ICP-AES and inductively coupled plasma mass spectrometry (ICP-MS). For the sake of comparison a conventional sample introduction system (i.e. pneumatic nebulizer attached to a spray chamber) was employed. Matrix effects, precision, accuracy and analysis throughput have been selected as comparison criteria. For ICP-AES measurements, wine samples can be directly analyzed without any sample treatment (i.e. sample dilution or digestion) using pure aqueous standards although internal standardization (IS) (i.e. Sc) is required. The behaviour of the MWDS operating with organic solutions in ICP-MS has been characterized for the first time. In this technique the MWDS has shown its efficiency to mitigate ethanol related matrix effects up to concentrations of 1% (w/w). Therefore, wine samples must be diluted to reduce the ethanol concentration up to this value. The results obtained have shown that the MWDS is a powerful device for the elemental analysis of wine samples in both ICP-AES and ICP-MS. In general, the MWDS has some attractive advantages for elemental wine analysis when compared to a conventional sample introduction system such as: (i) higher detection capabilities; (ii) lower ethanol matrix effects; and (iii) lower spectral interferences (i.e. ArC(+)) in ICP-MS.  相似文献   

6.
Instrumental neutron activation analysis (INAA), inductively coupled plasma-mass spectrometry (ICP-MS) and inductively coupled plasma-atomic emission spectrometry (ICP-AES) were used for the determination of major and trace elements in sediment samples of the Bouregreg river (Morocco). The reliability of the results was checked, by using IAEA Soil-7 certified reference material. Results obtained by the three techniques were compared to control digestions efficiencies. A general good agreement was found between INAA and both ICP-MS and ICP-AES after alkaline fusion (ICPf). The ICP-MS technique used after acid attack (ICPa) was satisfactory for a few elements. A principal component analysis (PCA) has been used for analyzing the variability of concentrations, and defining the most influential sites with respect to the general variation trends. Three groups of elements could be distinguished. For these groups a normalization of concentrations to the central element concentration (that means Mn, Si or Al) is proposed.  相似文献   

7.
On-line coupling of inductively coupled plasma (ICP) techniques such as ICP-AES and ICP-MS with ion chromatography (IC) offers unique features for ultra-trace analysis. An on-line preconcentration procedure based on cation exchange enables sub-ng/g analysis in complex matrices like molybdenum and tungsten. The best dissolution reagent for these matrices is hydrogen peroxide, which can be cleaned to ultra high purity with the same metal free chromatography equipment used for the preconcentration. Preconcentration is possible for elements that show cationic reactions within acidic peroxide containing solutions. In this study 28 elements detrimental for microelectronics applications are observed. A comparison of the combinations IC-ICP-AES and IC-ICP-MS with glow discharge mass spectrometry (GDMS) for the analysis of today's purest tungsten samples shows the analytical power and accuracy of the coupled devices. Graphite furnace atomic absorption spectrometry (GFAAS) as an extremely sensitive analytical technique is applied with and without the same sample pretreatment as used for the on-line coupling. Direct GFAAS measurements of alkali metals are complementary to IC-ICP techniques. The data evaluated with these wet chemical techniques are compared to the usual manufacturers characterisation technique GDMS. With respect to the low concentrations present in these high purity materials (ng/g level in the solid) the discrepancies between all methods are acceptable. The sensitivity of IC-ICP-MS is in most cases far superior to IC-ICP-AES and for some elements also to GDMS. Furthermore the specific advantages of on-line coupling such as the elimination of isobaric interferences in ICP-MS or spectral interferences in ICP-AES are shown for ICP-AES and ICP-MS determinations.  相似文献   

8.
萤石是一种重要的战略性非金属矿产资源,本文对中国国家标准、行业标准、国际标准(ISO)、美国标准(ASTM)以及俄罗斯标准(GOST)中的萤石成分分析标准方法的现状进行了介绍。对近年来X射线荧光光谱法(XRF)、电感耦合等离子体发射光谱法(ICP-AES)、电感耦合等离子体质谱法(ICP-MS)、激光诱导击穿光谱法(LIBS)等技术在萤石成分分析中的应用以及标准物质/标准样品研制情况进行了总结和评述。文章认为,萤石分析测试技术标准体系相对完备,XRF、ICP-AES、ICP-MS等仪器分析测试技术已普遍应用于萤石样品实验室分析,建议尽快研究并建立萤石中稀土等微量元素测定的标准方法,并开展相应标准物质/标准样品的研制,同时应大力开展原位在线分析技术的研究与开发,以适应工业在线自动化监测的需求,LIBS与在线XRF技术联合在萤石在线分析方面具有良好的应用潜力。  相似文献   

9.
The quantitative determination of trace elements in nuclear samples by GDMS and ICP-MS is presented and compared. Spectral interferences, matrix effects, detection limits, precision and accuracy are discussed. Results for selected samples demonstrated that both techniques are complementary. The use of a multi-standard solution provides the most accurate results in ICP-MS, whereas in GDMS this is achieved by relative sensitivity factors (RSF) matrix matched. Nevertheless, the use of standard RSF allows a fast screening.  相似文献   

10.
The quantitative determination of trace elements in nuclear samples by GDMS and ICP-MS is presented and compared. Spectral interferences, matrix effects, detection limits, precision and accuracy are discussed. Results for selected samples demonstrated that both techniques are complementary. The use of a multi-standard solution provides the most accurate results in ICP-MS, whereas in GDMS this is achieved by relative sensitivity factors (RSF) matrix matched. Nevertheless, the use of standard RSF allows a fast screening.  相似文献   

11.
Analytical schemes for the determination of trace elements in high-purity niobium, tantalum and their oxides are proposed. The schemes are based on microwave dissolution of the metals and oxides followed by inductively coupled plasma atomic emission spectrometry (ICP-AES) determination of impurities in the solutions. The possibilities of interelement and off-peak background corrections in ICP-AES analysis are discussed. The accuracy of the results obtained is confirmed by the determination of trace elements after a matrix sorption separation procedure. For a number of elements, a comparison of the results obtained by ICP-AES without and with the matrix separation procedure and by electrothermal atomic absorption spectrometry (ETAAS) shows good agreement. The limits of detection for direct ICP-AES determination are in the range 0.4*1.0 μg g−1 for Ba, Ca, Fe, Mg, Mn, Y and La; between 2.0 and 10.0 μ g−1 for B, Cd, Co, Cr, Cu, Hf, Mo, Na, Nb, Ni, Pb, Sr, Ti, Zr and Ta; and for K, Sb and W a detection limit of 20 μ g−1 is achieved. The schemes proposed are intended for rapid routine analysis.  相似文献   

12.
综述了近年来稀土精矿中稀土总量、15种稀土氧化物配分量以及非稀土杂质含量分析测定的国家标准以及最新方法。电感耦合等离子体原子发射光谱法精密度高,检测速度快,为测定稀土精矿中稀土总量的常用方法。电感耦合等离子体质谱法不受基体干扰,更适用于痕量和超痕量稀土元素含量的测定,满足中、重稀土精矿的测定需求。分光光度法测定稀土精矿中非稀土杂质Th,Ti含量准确度高。对稀土精矿分析检测发展趋势进行了展望。  相似文献   

13.
袁甫  綦文娣 《分析化学》1993,21(8):918-920
本文提出了以PGS-2型平面光栅摄谱仪与Plasma Therm ICP-5000D射频发生器联用,乙醇溶液预去溶进样方法,直接同时测定高纯氧化钬中5个稀土杂质元素的方法,并讨论了基体浓度对分析方法检出限的影响和光谱干扰及其校正。当样品溶液中稀土总浓度为5mg/ml时,测定下限分别为铽0.003%,镝、铒和铥0.002%,钇0.0003%。其相对标准偏差为2.8%~7.4%。  相似文献   

14.
Mass spectrometric methods for the trace analysis of inorganic materials with their ability to provide a very sensitive multielemental analysis have been established for the determination of trace and ultratrace elements in high-purity materials (metals, semiconductors and insulators), in different technical samples (e.g. alloys, pure chemicals, ceramics, thin films, ion-implanted semiconductors), in environmental samples (waters, soils, biological and medical materials) and geological samples. Whereas such techniques as spark source mass spectrometry (SSMS), laser ionization mass spectrometry (LIMS), laser ablation inductively coupled plasma mass spectrometry (LA-ICP-MS), glow discharge mass spectrometry (GDMS), secondary ion mass spectrometry (SIMS) and inductively coupled plasma mass spectrometry (ICP-MS) have multielemental capability, other methods such as thermal ionization mass spectrometry (TIMS), accelerator mass spectrometry (AMS) and resonance ionization mass spectrometry (RIMS) have been used for sensitive mono- or oligoelemental ultratrace analysis (and precise determination of isotopic ratios) in solid samples. The limits of detection for chemical elements using these mass spectrometric techniques are in the low ng g−1 concentration range. The quantification of the analytical results of mass spectrometric methods is sometimes difficult due to a lack of matrix-fitted multielement standard reference materials (SRMs) for many solid samples. Therefore, owing to the simple quantification procedure of the aqueous solution, inductively coupled plasma mass spectrometry (ICP-MS) is being increasingly used for the characterization of solid samples after sample dissolution. ICP-MS is often combined with special sample introduction equipment (e.g. flow injection, hydride generation, high performance liquid chromatography (HPLC) or electrothermal vaporization) or an off-line matrix separation and enrichment of trace impurities (especially for characterization of high-purity materials and environmental samples) is used in order to improve the detection limits of trace elements. Furthermore, the determination of chemical elements in the trace and ultratrace concentration range is often difficult and can be disturbed through mass interferences of analyte ions by molecular ions at the same nominal mass. By applying double-focusing sector field mass spectrometry at the required mass resolution—by the mass spectrometric separation of molecular ions from the analyte ions—it is often possible to overcome these interference problems. Commercial instrumental equipment, the capability (detection limits, accuracy, precision) and the analytical application fields of mass spectrometric methods for the determination of trace and ultratrace elements and for surface analysis are discussed.  相似文献   

15.
The possibility of using ETAAS or ICP-AES for the determination of trace amounts of Ag, Bi, Cd, Co, Cr, Cu, Fe, Mn, Ni, Pb, Pd, Pt and Sb in pure gold is investigated. The influence of the matrix element on the atomization of the trace analytes is studied and optimal instrumental parameters are defined. An analytical method based on matrix element reductive separation followed by spectrometric determination of trace analytes is proposed as an alternative for the analysis of high purity gold. Advantages and disadvantages of proposed analytical procedures from the viewpoint of achieved repeatability, reproducibility and detection limits and of the duration of analysis are discussed.  相似文献   

16.
对不同的样品消解方法及电感耦合等离子体质谱、电感耦合等离子体原子发射光谱、石墨炉原子吸收光谱法测定土壤中铅的测定结果进行比对。采用电热板、微波及水浴3种加热方式,选择硝酸、氢氟酸、双氧水、王水、高氯酸、盐酸的不同组合进行土壤样品消解,通过分析测定值的精密度和准确度,考察消解体系对电感耦合等离子体质谱、电感耦合等离子体发射光谱、石墨炉原子吸收光谱法测定结果的影响。结果表明采用电感耦合等离子体质谱法测定土壤中的铅,最适宜的消解体系是硝酸-氢氟酸-高氯酸(微波加热),采用电感耦合等离子体原子发射光谱法测定最适宜的消解体系是硝酸(电热板加热),采用石墨炉原子吸收光谱法测定最适宜的消解体系是硝酸-盐酸-高氯酸(微波加热)。电感耦合等离子体质谱法的精密度和准确度优于另外两种方法。  相似文献   

17.
The applicability of GDMS, SIMS, SSMS, NAA and TMS with AAS, ICP-OES and ICP-MS end determination for routine bulk ultratrace analysis of high purity refractory metals was investigated. Due to the heterogeneous distribution of trace elements in the sub-ppm range, sample consumption and analysis time have a tremendous influence on quantification with procedures of low sample consumption. As an example, GDMS, which is commonly used for ultrapure material certification by most of the manufacturers in Europe and the USA, exhibits discrepancies by more than one order of magnitude for repetitive analyses of a series of trace components in the same sample. Furthermore, results of different laboratories using the same instrument are frequently not comparable. Due to easy standardization and large sample consumption TMS procedures combined with FAAS, GFAAS, ICP-AES and ICP-MS as methods of end determination exhibit better precision and accuracy than GDMS and SIMS. Detection limits are comparably low or even better in case of ICP-MS end determination. TMS procedures are less expensive and less time consuming than highly sophisticated analytical techniques like GDMS, SIMS or NAA. Additionally, they can be easily applied by experienced personnel in a well equipped industrial analytical laboratory.List of Acronyms Used AAS Atomic Absorption Spectrometry - FAAS Flame Atomic Absorption Spectrometry - GDMB Gesellschaft Deutscher Metallhütten- und Bergleute - GDMS Glow Discharge Mass Spectrometry - GFAAS Graphite Furnace Atomic Absorption Spectrometry - ICP-AES Inductively Coupled Plasma Atomic Emission Spectrometry - ICP-MS Inductively Coupled Plasma Mass Spectrometry - IDMS Isotope Dilution Mass Spectrometry - NAA Neutron Activation Analysis - SIMS Secondary Ion Mass Spectrometry - SSMS Spark Source Mass Spectrometry - TMS Trace-Matrix Separation - VLSI Very Large Scale Integration - XRFS X-Ray fluorescence Spectroscopy Dedicated to Professor Günther Tölg on the occasion of his 60th birthday  相似文献   

18.
电感耦合等离子体质谱(ICP-MS)联用技术的应用及展望   总被引:2,自引:0,他引:2  
总结了ICP-MS联用技术在国内外检测领域的最新应用,并就"分离器与ICP-MS"、"进样系统与ICP-MS"、"ICP-MS与其它仪器物理联用"等联用技术进行了分类、拓展和总结。ICP-MS联用技术的发展重点将倾向于提高分析精密度、复杂基体元素超痕量分析、同位素比值及形态研究领域,相关联用技术的国家标准或行业标准出台已迫在眉睫。  相似文献   

19.
光学玻璃中的各种元素对玻璃的光学性能有不同的影响。如加入镉可以提高玻璃折射率;砷的引入能增加玻璃的透光度,含铅玻璃具有低成本、高折射性等优点。但是镉、砷、铅均为有毒元素,玻璃加工和处理过程以及毒废弃物的处理都可能引起水、土壤、大气的污染并给人体带来一定的危害  相似文献   

20.
Recent regulation in Japan requires more sensitive trace analysis methods for the determination of arsenic and selenium and their oxidation states As(III) and (V), Se(IV) and (VI). The hydride generation (HG) technique is usually used in combination with AAS and ICP-AES to increase sensitivity. However, hydrochloric acid is mostly used to acidify the sample solution in HG. Isobaric interferences due to chlorine-related species cause mass spectral problems when the same solution is used for the determination of these elements by ICP-MS. In this study, different oxidation states of As and Se were determined by coupling ion chromatography (IC) to an ICP-AES instrument. An HG technique was used to introduce test samples into the ICP. Nitric acid was employed to acidify the samples for HG. The concentrations of acid and base were kept as low as possible to reduce contamination. The formation of As and Se hydrides could be achieved without HCl, if the concentrations of acid and alkaline solutions were optimized. However, HCl was necessary for additional reduction of Se(VI) to Se(IV).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号