首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Electrochemical cleavage of DNA in the presence of copper-sulfosalicylic acid [Cu(ssal)(2)(2+)] complex was studied. The cleavage was observed in a certain potential region where redox cycling of Cu(ssal)(2)(2+)/Cu(ssal)(2)(+) took place. Cu(ssal)(2)(2+) complex mediate generation of reactive oxygen species from O(2) by the Fenton reaction, these radicals are capable of damaging DNA. The cleaved DNA fragments were separated by high-performance liquid chromatography (HPLC). The experimental results indicated that the method for electrochemical cleavage of DNA by Cu(ssal)(2)(2+) complex was simple and efficient.  相似文献   

2.
The interaction of aqua (N-salicylideneglycinato)copper(II) (Cu(salgly)2+) complex with calf thymus DNA has been investigated by cyclic voltammetry. Potential-modulated DNA cleavage in the presence of Cu(salgly)2+ complex was performed at a gold electrode in a thin layer cell. DNA can be efficiently cleaved by electrochemically reducing Cu(salgly)2+ complex to Cu(salgly)+ complex at -0.7 V (vs. Ag/AgCl). When the solution was aerated with a small flow of O2 during electrolysis, the extent of DNA cleavage was dramatically enhanced, and hydroxyl radical scavengers inhibited DNA cleavage. These results suggested that O2 and hydroxyl radical were involved in potential-modulated DNA cleavage reaction. The percentage of DNA cleavage was enhanced as the working potential was shifted to more negative values and the electrolysis time was increased. It was also dependent on the ratio of Cu(salgly)2+ complex to DNA concentration. The cleaved DNA fragments were separated by high performance liquid chromatography (HPLC). The experimental results indicated that the method for potential-modulated DNA cleavage by Cu(salgly)2+ complex was simple and efficient.  相似文献   

3.
Singh TN  Turro C 《Inorganic chemistry》2004,43(23):7260-7262
The ligand-loss photochemistry of cis-[Ru(bpy)(2)(NH(3))(2)](2+) (bpy = 2,2'-bipyridine) was investigated in water and in the presence of added ligands such as bipyridine and chloride. Irradiation of the complex results in the covalent binding to 9-methyl- and 9-ethylguanine, as well as to single-stranded and double-stranded DNA. This photoinduced DNA binding is not observed for the control complex [Ru(bpy)(2)(en)](2+) (en = ethylenediamine) under similar irradiation conditions. The results presented here show that octahedral Ru(II) complexes with photolabile ligands may prove useful as photoactivated cisplatin analogs.  相似文献   

4.
The DNA-binding properties of Ru(bpy)2(eilatin)(2+) have been investigated to determine if the sterically expansive eilatin ligand confers specificity for destabilized single-base mismatches in DNA. Competitive DNA photocleavage experiments employing a sequence-neutral metallointercalator, Rh(bpy)2(phi)(3+) (phi = 9,10-phenanthrenequinonediimine), and a mismatch-specific metalloinsertor, Rh(bpy)2(chrysi)(3+) (chrysi = chrysene-5,6-quinonediimine), reveal that the eilatin complex binds to a CC mismatched site with an apparent binding constant of 2.2(2) x 10(6) M(-1). Nonetheless, the selectivity in binding mismatched DNA is not high: competitive titrations with Rh(bpy)2(phi)(3+) show that the complex binds also to well-matched B-form sites. Thus, Ru(bpy)2(eilatin)(2+), despite containing the extremely expansive eilatin ligand, displays lower selectivity for the mismatch than does Rh(bpy)2(chrysi)(3+), a metalloinsertor containing the smaller, though still bulky, chrysene-5,6-quinonediimine ligand. In summary, the size and shape of the eilatin ligand allow stacking with both well-matched and mismatched DNA.  相似文献   

5.
Rapid detection of DNA damage could serve as a basis for in vitro genotoxicity screening for new organic compounds. Ultrathin films (20-40 nm) containing myoglobin or cytochrome P450(cam) and DNA grown layer-by-layer on electrodes were activated by hydrogen peroxide, and the enzyme in the film generated metabolite styrene oxide from styrene. This styrene oxide reacted with double stranded (ds)-DNA in the same film, mimicking metabolism and DNA damage in human liver. DNA damage was detected by square wave voltammetry (SWV) by using catalytic oxidation with Ru(bpy)(3)(2+) (bpy = 2,2'-bipyridine) and by monitoring the binding of Co(bpy)(3)(3+). Damaged DNA reacts more rapidly than intact ds-DNA with Ru(bpy)(3)(3+), giving SWV peaks at approximately 1 V versus SCE that grow larger with reaction time. Co(bpy)(3)(3+) binds more strongly to intact ds-DNA, and its SWV peaks at 0.04 V decreased as DNA was damaged. Little change in SWV signals was found for incubations of DNA/enzyme films with unreactive organic controls or hydrogen peroxide. Capillary electrophoresis and HPLC-MS suggested the formation of styrene oxide adducts of DNA bases under similar reaction conditions in thin films and in solution. The catalytic SWV method was more sensitive than the Co(bpy)(3)(3+) binding assay, providing multiple measurements over a 5 min reaction time.  相似文献   

6.
A tris(heteroleptic) phenanthrenequinone diimine (phi) complex of Ir(III), Ir(bpy)(phen)(phi)(3+), was synthesized through the stepwise introduction of three different bidentate ligands, and the Lambda- and Delta-enantiomers were resolved and characterized by CD spectroscopy. Like other phi complexes, this tris(heteroleptic) iridium complex binds avidly to DNA by intercalation. Electrochemical studies show that Ir(bpy)(phen)(phi)(3+) undergoes a reversible one-electron reduction at E(0) = -0.025 V in 0.1 M TBAH/DMF (versus Ag/AgCl), and spectroelectrochemical studies indicate that this reduction is centered on the phi ligand. The EPR spectrum of electrochemically generated Ir(bpy)(phen)(phi)(2+) is consistent with a phi-based radical. The electrochemistry of Ir(bpy)(phen)(phi)(3+) was also probed at a DNA-modified electrode, where a DNA binding affinity of K = 1.1 x 10(6) M(-1) was measured. In contrast to Ir(bpy)(phen)(phi)(3+) free in solution, the complex bound to DNA undergoes a concerted two-electron reduction, to form a diradical species. On the basis of UV-visible and EPR spectroscopies, it is found that disproportionation of electrochemically generated Ir(bpy)(phen)(phi)(2+) occurs upon DNA binding. These results underscore the rich redox chemistry associated with metallointercalators bound to DNA.  相似文献   

7.
One-electron guanine oxidation in DNA has been investigated in anionic reverse micelles (RMs). A photochemical method for generating Ru3+ from the ruthenium polypyridyl complex tris(2-2'-bipyridine)ruthenium(II) chloride ([Ru(bpy)3]Cl2) is combined with high-resolution polyacrylamide gel electrophoresis (PAGE) to quantify piperidine-labile guanine oxidation products. As characterized by emission spectroscopy of Ru(bpy)3(2+), the addition of DNA to RMs containing Ru(bpy)3(2+) does not perturb the environment of Ru(bpy)3(2+). The steady-state quenching efficiency of Ru(bpy)3(2+) with K3[Fe(CN)6] in buffer solution is approximately 2-fold higher than that observed in RMs. Consistent with the difference in quenching efficiency in the two media, a 1.5-fold higher yield of piperidine-labile damage products as monitored by PAGE is observed for duplex oligonucleotide in buffer vs RMs. In contrast, a 13-fold difference in the yield of PAGE-detected G oxidation products is observed when single-stranded DNA is the substrate. Circular dichroism spectra showed that single-stranded DNA undergoes a structural change in anionic RMs. This structural change is potentially due to cation-mediated adsorption of the DNA phosphates on the anionic headgroups of the RMs, leading to protection of the guanine from oxidatively generated damage.  相似文献   

8.
A new Ru(II) complex of [Ru(phen)(2)(Hcdpq)](ClO(4))(2) {phen = 1,10-phenanthroline, Hcdpq = 2-carboxyldipyrido[3,2-f:2',3'-h]quinoxaline} was synthesized and characterized. The spectrophotometric pH and calf thymus DNA (ct-DNA) titrations showed that the complex acted as a dual molecular light switch for pH and ct-DNA with emission enhancement factors of 17 and 26, respectively. It was shown to be capable of distinguishing ct-DNA from yeast RNA with this binding selectivity being superior to two well-known DNA molecular light switches of [Ru(bpy)(2)(dppz)](2+) {bpy =2,2'-bipyridine, and dppz = dipyrido-[3,2-a:2',3'-c]phenazine}and ethidium bromide. The complex bond to ct-DNA probably in groove mode with a binding constant of (4.67 ± 0.06) × 10(3) M(-1) in 5 mM Tris-HCl, 50 mM NaCl (pH = 7.10) buffer solution, as evidenced by UV-visible absorption and luminescence titrations, the dependence of DNA binding constants on NaCl concentrations, DNA competitive binding with ethidium bromide, and emission lifetime and viscosity measurements. To get insight into the light-switch mechanism, theoretical calculations were also performed by applying density functional theory (DFT) and time-dependent DFT.  相似文献   

9.
Here we explore DNA binding by a family of ruthenium(II) polypyridyl complexes using an atomic force microscope (AFM) and optical tweezers. We demonstrate using AFM that Ru(bpy)2dppz2+ intercalates into DNA (K(b) = 1.5 x 10(5) M(-1)), as does its close relative Ru(bpy)2dppx2+ (K(b) = 1.5 x 10(5) M(-1)). However, intercalation by Ru(phen)3(2+) and other Ru(II) complexes with K(b) values lower than that of Ru(bpy)2dppz2+ is difficult to determine using AFM because of competing aggregation and surface-binding phenomena. At the high Ru(II) concentrations required to evaluate intercalation, most of the DNA strands acquire a twisted, curled conformation that is impossible to measure accurately. The condensation of DNA on mica in the presence of polycations is well known, but it clearly precludes the accurate assessment by AFM of DNA intercalation by most Ru(II) complexes, though not by ethidium bromide and other monovalent intercalators. When stretching individual DNA molecules using optical tweezers, the same limitation on high metal concentration does not exist. Using optical tweezers, we show that Ru(phen)2dppz2+ intercalates avidly (K(b) = 3.2 x 10(6) M(-1)) whereas Ru(bpy)3(2+) does not intercalate, even at micromolar ruthenium concentrations. Ru(phen)3(2+) is shown to intercalate weakly (i.e., at micromolar concentrations (K(b) = 8.8 x 10(3) M(-1))). The distinct differences in DNA stretching behavior between Ru(phen)3(2+) and Ru(bpy)3(2+) clearly illustrate that intercalation can be distinguished from groove binding by pulling the DNA with optical tweezers. Our results demonstrate both the benefits and challenges of two single-molecule methods of exploring DNA binding and help to elucidate the mode of binding of Ru(phen)3(2+).  相似文献   

10.
Yang IV  Thorp HH 《Inorganic chemistry》2000,39(21):4969-4976
The oxidation of guanines in DNA by Ru(III) is investigated by catalytic electrochemistry and stopped-flow spectrophotometry. The reactions of calf thymus DNA (20% guanine) and herring testes DNA (25% guanine) with Ru(bpy)3(3+) (bpy = 2,2'-bipyridine) show biexponential decays in stopped-flow spectrophotometric experiments with the fast and slow components in 2:1 ratios and average rate constants in 880 mM NaCl of = 18,700 M-1 s-1 for calf thymus DNA and = 24,600 M-1 s-1 for herring testes DNA. The higher rate constant for the more guanine-rich DNA is possibly due to a higher density of electron-rich guanine multiplets. The observation of a biexponential decay is incorporated into digital simulations of the catalytic voltammograms observed for Ru(bpy)3(2+) in the presence of DNA. For both DNAs, the rates observed by voltammetry are somewhat slower than those observed by stopped-flow spectrophotometry and the dependence of the rate constants on scan rate using the biexponential model is less pronounced than when only one decay is treated, supporting the notion that the scan rate dependence arises from the multiphasic decay. At low salt concentrations, where binding of the metal complex to DNA increases the effective catalytic rate constant, rates can be measured by stopped-flow spectrophotometry only with a less oxidizing complex, Fe(bpy)3(3+/2+), which yields trends in the rate constants similar to those observed for the case of Ru(bpy)3(3+/2+) at high ionic strength. Oligonucleotides based on the trinucleotide repeat sequences (AGT)n and (GAA)n produce significant catalytic currents, which are readily interpreted in terms of the guanine concentration and the secondary structure discerned from gel electrophoresis experiments. These experiments may provide a basis for sensing secondary structures and repeat numbers in biologically relevant DNAs.  相似文献   

11.
Chen M  Li H  Shao J  Huang Y  Xu Z 《Inorganic chemistry》2011,50(6):2043-2045
In this correspondence, we report on the first preparation of [Ru(bpy)(2)(dppz)](2+)-intercalated (bpy = 2,2'-bipyridine; dppz = dipyrido[3,2-a:2',3'-c]phenazine) DNA films on an indium-tin oxide surface via a solution-based self-standing strategy, carried out by the direct mixing of aqueous solutions of both anionic DNA and cationic metallointercalator at a molar ratio of 5:6. The luminescence of a [Ru(bpy)(2)(dppz)](2+)-intercalated DNA cast film is studied and found to show excellent tunable characteristics by Cu(2+) ions and ethylenediaminetetraacetic acid addition.  相似文献   

12.
近年来,钌多吡啶配合物与DNA的作用得到了比较广泛的研究,并且发展了一系列具有特定功能的钌配合物犤1犦。如传统的DNA分子光开关犤Ru(bpy)2dppz犦2+和犤Ru(phen)2dppz犦2+犤2,3犦(bpy=2,2'-联吡啶,phen=1,10-菲咯啉,dppz=二吡啶犤3,2-a:2',3'-c犦吩嗪)。这些配合物与DNA具有较强的结合力,在水溶液中几乎不发光,但在DNA存在下则有强烈荧光发出。这是由于配合物插入DNA的碱基对之后,保护了dppz的吡嗪环上的N原子,使其免受水分子的进攻从而导致配合物荧光的恢复。但是对于大多数的多吡啶钌配合物来讲,由于其自身较强的背景荧光或与DN…  相似文献   

13.
This paper reports a novel detection method for DNA hybridization based on the electrochemiluminescence (ECL) of Ru(bpy)(3)(2+) with a DNA-binding intercalator as a reductant of Ru(bpy)(3)(3+). Some ECL-inducible intercalators have been screened in this study using electrochemical methods combined with a chemiluminescent technique. The double-stranded DNA intercalated by doxorubicin, daunorubicin, or 4',6-diamidino-2-phenylindole (DAPI) shows a good ECL with Ru(bpy)(3)(2+) at +1.19 V (versus Ag/AgCl), while the non-intercalated single-stranded DNA does not. In order to stabilize the self-assembled DNA molecules during ECL reaction, we constructed the ECL DNA biosensor separating the ECL working electrode with an immobilized DNA probe. A gold electrode array on a plastic plate was assembled with a thru-hole array where oligonucleotide probes were immobilized in the side wall of thru-hole array. The fabricated ECL DNA biosensor was used to detect several pathogens using ECL technique. A good specificity of single point mutations for hepatitis disease was obtained by using the DAPI-intercalated Ru(bpy)(3)(2+) ECL.  相似文献   

14.
Interactions with DNA by a family of ruthenium(II) complexes bearing the dppz (dppz = dipyridophenazine) ligand or its derivatives have been examined. The complexes include Ru(bpy)(2)(dppx)(2+) (dppx = 7,8-dimethyldipyridophenazine), Ru(bpy)(2)(dpq)(2+) (dpq = dipyridoquinoxaline), and Ru(bpy)(2)(dpqC)(2+) (dpqC = dipyrido-6,7,8,9-tetrahydrophenazine). Their ground and excited state oxidation/reduction potentials have been determined using cyclic voltammetry and fluorescence spectroscopy. An intercalative binding mode has been established on the basis of luminescence enhancements in the presence of DNA, excited state quenching, fluorescence polarization values, and enantioselectivity. Oxidative damage to DNA by these complexes using the flash/quench method has been examined. A direct correlation between the amount of guanine oxidation obtained via DNA charge transport and the strength of intercalative binding was observed. Oxidative damage to DNA through DNA-mediated charge transport was also compared directly for two DNA-tethered ruthenium complexes. One contains the dppz ligand that binds avidly by intercalation, and the other contains only bpy ligands, that, while bound covalently, can only associate with the base pairs through groove binding. Long range oxidative damage was observed only with the tethered, intercalating complex. These results, taken together, all support the importance of close association and intercalation for DNA-mediated charge transport. Electronic access to the DNA base pairs, provided by intercalation of the oxidant, is a prerequisite for efficient charge transport through the DNA pi-stack.  相似文献   

15.
Directed self-assembly using inorganic coordination chemistry is an attractive approach for making functional supramolecular structures. In this article, the synthesis and characterization of Ru(bpy) 3 (2+) compounds derivatized with aminoethylglycine (aeg) substituents containing pendant bipyridine (bpy) ligands is presented. The free bpy ligands in these complexes are available for metal chelation to form coordinative cross-links; addition of Cu (2+) or Zn (2+) assembles heterometallic structures containing two or three transition-metal complexes. Control over relative placement of metal complexes is accomplished using two strategies: two bipyridine-containing aeg strands tethered to Ru(bpy) 3 (2+) allow intramolecular coordination and result in a dimetallic hairpin motif. Ru(bpy) 3 (2+) modified with a single strand forms intermolecular cross-links forming the trimetallic complex. Each of these is characterized by a range of methods, and their photophysical properties are compared. These data, and comparison to an acetyl aeg- modified Ru(bpy) 3 (2+) complex, confirm that the metal ions cross-link bpy-containing aeg strands. Heterometallic complexes containing bound Cu (2+) cause a dramatic reduction in the Ru(bpy) 3 (2+) quantum yields and lifetimes. In contrast, the Ru(bpy) 3 (2+) hairpin with coordinated Zn (2+) has only a slight decrease in quantum yield but no change in lifetime, which could be a result of steric impacts on structure in the dimetallic species. Analogous effects are not observed in the trimetallic Ru-Zn-Ru structures in which this constraint is absent. Each of these heterometallic structures represents a facile and reconfigurable means to construct multimetallic structures by metal-coordination-based self-assembly of modular artificial peptide units.  相似文献   

16.
The synthesis, characterization and DNA binding properties of the complex [Ru(terpy)(4,4'-(COLysCONH(2))(2)bpy)Cl](3+) (1) have been studied. Complex (1) hydrolyzes to (2) with a calculated rate constant K(h) = 2.35 ± 0.08 × 10(-4) s(-1) and binds coordinatively to ct-DNA, with a saturation r-value at about 0.1. Stabilization of the ct-DNA helix at low electrolyte (NaClO(4)) concentration (10 mM) and destabilization at higher electrolyte concentrations (50-200 mM) was observed. Circular dichroism studies indicate that the hydrolyzed complex binds to DNA, increasing the unwinding of the DNA helix with an unwinding angle calculated as Φ = 12 ± 2°. The positive LD signal observed at 350 nm indicates some kind of specificity in complex orientation towards the global DNA axis. Complex (2) binds specifically to G4 on the central part of the oligonucleotide duplexes d(CGCGCG)(2) and d(GTCGAC)(2), as evidenced by NMR spectroscopy. Both lysine moieties were found to interact most likely electrostatically with the DNA phosphates, assisting the coordinative binding and increasing the DNA affinity of the complex. Photoinduced DNA cleavage by (2), upon UVA irradiation was observed, but despite its relative high DNA affinity, it was incomplete (~12%).  相似文献   

17.
Lim MH  Lau IH  Barton JK 《Inorganic chemistry》2007,46(23):9528-9530
Reagents for recognition and efficient cleavage of mismatched DNA without photoactivation were designed. They contain a combination of a mismatch-directing metalloinsertor, [Rh(bpy)2(chrysi)]3+ (bpy=2,2'-bipyridyl, chrysi=5,6-chrysenequinone diimine), and an oxidative cleavage functionality, [Cu(phen)2]+ (Cu). Both unconjugated (Rh+Cu) and conjugated (Rh-Cu) frameworks of the Rh insertor and Cu were prepared. Compared to Cu, both constructs Rh+Cu and Rh-Cu exhibit efficient site-specific DNA scission only with mismatched DNA, confirmed by experiments with 32P-labeled oligonucleotides. Furthermore, these studies indicate that DNA cleavage occurs near the mismatch in the minor groove and on both strands. Interestingly, the order of reactivity of the three systems with a CC mismatch is Rh+Cu>Rh-Cu>Cu. Rh binding appears to direct Cu reactivity with or without tethering. These results illustrate advantages and disadvantages in bifunctional conjugation.  相似文献   

18.
Ternary copper(II) complexes [Cu(l-met)B(Solv)](ClO4) (1-4), where B is a N,N-donor heterocyclic base like 2,2'-bipyridine (bpy, 1), 1,10-phenanthroline (phen, 2), dipyrido[3,2-d:2',3'-f]quinoxaline (dpq, 3) and dipyrido[3,2-a:2'],3'-c]phenazene (dppz, 4), are prepared and their DNA binding and photo-induced DNA cleavage activity studied (L-Hmet =L-methionine). Complex 2, structurally characterized by X-ray crystallography, shows a square pyramidal (4 + 1) coordination geometry in which the N,O-donor L-methionine and N,N-donor heterocyclic base bind at the basal plane and a solvent molecule is coordinated at the axial site. The complexes display a d-d band at approximately 600 nm in DMF and exhibit a cyclic voltammetric response due to the Cu(II)/Cu(I) couple near -0.1 V in DMF-Tris-HCl buffer. The complexes display significant binding propensity to the calf thymus DNA in the order: 4(dppz) > 3(dpq) > 2(phen> 1(bpy). Control cleavage experiments using pUC19 supercoiled DNA and distamycin suggest major groove binding for the dppz and minor groove binding for the other complexes. Complexes 2-4 show efficient DNA cleavage activity on UV (365 nm) or red light (632.8 nm) irradiation via a mechanistic pathway involving formation of singlet oxygen as the reactive species. The DNA cleavage activity of the dpq complex is found to be significantly more than its dppz and phen analogues.  相似文献   

19.
The crystal structures of the series of three complexes, [Cu(Gly)(bpy)Cl].2H2O (1) (Gly=glycine; bpy=2,2'-bipyridine), [Cu(Gly)(phen)Cl]2.7H2O (2) (phen=1,10-phenanthroline), and [Cu(Gly)(bpa)(H2O)Cl] (3) (bpa=2,2'-bipyridylamine) were determined, and the coordination modes of Cu(II) ternary complexes were compared. The central Cu(II) atoms of complexes 1 and 3 have a similar distorted octahedral coordination geometry, while the Cu(II) atom of complex 2 has a distorted square pyramidal coordination. In all complexes, the aromatic heterocyclic compounds bpy, phen, and bpa, behave as a bidentate N,N' ligand, and Gly behaves as a bidentate N,O ligand. DNA-binding properties of the complexes to calf thymus (CT) DNA were studied by using the fluorescence method. Each of the complexes showed binding propensity to CT DNA with the relative order 2>3> or =1. DNA cleavage studies indicate that each of the complexes, especially 2, can cleave plasmid supercoiled pBR322 DNA in the presence of H2O2 and ascorbic acid with cleavage efficiency in the order 2>3 approximately 1. The degradation of the conformation of CT DNA by the complexes was also reflected in the decrease in the intensities of the characteristic CD bands with the relative order 2>3 approximately 1.  相似文献   

20.
The two enantiomers of [Ru(bpy)2(bbtb)]2+{bpy = 2,2'-bipyridine; bbtb = 4,4'-bis(benzothiazol-2-yl)-2,2'-bipyridine} have been isolated and fully characterised. Both enantiomers have been shown to have a strong association with calf thymus DNA by UV/visible absorption, emission and CD spectroscopy, with the Lambda enantiomer having the greater affinity. The binding of both enantiomeric forms of [Ru(bpy)2(Me2bpy)]2+ and [Ru(bpy)2(bbtb)]2+{Me(2)bpy = 4,4'-dimethyl-2,2'-bipyridine} to a range of oligonucleotides, including an octadecanucleotide and an icosanucleotide which contain hairpin-sequences, have been studied using a fluorescent intercalator displacement (FID) assay. The complex [Ru(bpy)2(bbtb)]2+ exhibited an interesting association with hairpin oligonucleotides, again with the Lambda enantiomer binding more strongly. A (1)H NMR spectroscopic study of the binding of both enantiomers of [Ru(bpy)2(bbtb)]2+ to the icosanucleotide d(CACTGGTCTCTCTACCAGTG) was conducted. This sequence contains a seven-base-pair duplex stem and a six-base hairpin-loop. The investigation gave an indication of the relative binding of the complexes between the two different regions (duplex and secondary structure) of the oligonucleotide. The results suggest that both enantiomers bind at the hairpin, with the ruthenium centre located at the stem-loop interface. NOE studies indicate that one of the two benzothiazole substituents of the bbtb ligand projects into the loop-region. A simple model of the metal complex/oligonucleotide adduct was obtained by means of molecular modelling simulations. The results from this study suggest that benzothiazole complexes derived from inert polypyridine ruthenium(II) complexes could lead to the development of new fluorescent DNA hairpin binding agents.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号