首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A new probe/Cu(2+) complex for the detection of his-tagged protein has been developed, based on an improved probe, Dansyl-Gly-Py (1), by closely mimicing the structure of a peptide, ATCUN. In aqueous solution, 1/Cu(2+) has good selectivity to histidine and cysteine, and further can detect histidine-rich protein by releasing the quenched fluorescence of 1.  相似文献   

2.
In Alzheimer's disease, copper binds to amyloid beta (Aβ) peptide and generates oxidative stress. The coordination of histidine (His) residues to Cu(2+) is still uncertain. We studied Cu(2+) binding to Aβ1-16 peptide using the diethyl pyrocarbonate (DEPC) assay and mass spectrometry. Our results show that only one His is involved in Cu(2+) coordination, which is identified as His6 using mass spectral studies. Novel nickel displacement studies have further supported the proposal that the Cu(2+) binding site of Aβ1-16 peptide resembles the ATCUN motif of human serum albumin.  相似文献   

3.
Nuclear magnetic resonance (NMR) spectroscopy was used to study a cyclic peptide derived from the amino-terminal copper-and-nickel-binding (ATCUN) motif. The three-dimensional structure of the unliganded peptide in aqueous solution was solved by simulated annealing using distance constraints derived from Nuclear Overhauser Effects. A structural model for the Ni(II)-bound complex was also produced based on NMR evidence and prior spectroscopic data, which are consistent with crystal structures of linear ATCUN complexes. Structural interpolation, or ‘morphing’, was used to understand the transition of this highly structured cyclic peptide from its unliganded structure to its metal-ion-bound structure.  相似文献   

4.
The utility of pseudocontact shifts in the structure refinement of metalloproteins has been evaluated using a native, paramagnetic Cu(2+) metalloprotein, plastocyanin from Anabaena variabilis (A.v.), as a model protein. First, the possibility of detecting signals of nuclei spatially close to the paramagnetic metal ion is investigated using the WEFT pulse sequence in combination with the conventional TOCSY and (1)H-(15)N HSQC sequences. Second, the importance of the electrical charge of the metal ion for the determination of correct pseudocontact shifts from the obtained chemical shifts is evaluated. Thus, using both the Cu(+) plastocyanin and Cd(2+)-substituted plastocyanin as the diamagnetic references, it is found that the Cd(2+)-substituted protein with the same electrical charge of the metal ion as the paramagnetic Cu(2+) plastocyanin provides the most appropriate diamagnetic reference signals. Third, it is found that reliable pseudocontact shifts cannot be obtained from the chemical shifts of the (15)N nuclei in plastocyanin, most likely because these shifts are highly dependent on even minor differences in the structure of the paramagnetic and diamagnetic proteins. Finally, the quality of the obtained (1)H pseudocontact shifts, as well as the possibility of improving the accuracy of the obtained structure, is demonstrated by incorporating the shifts as restraints in a refinement of the solution structure of A.v. plastocyanin. It is found that incorporation of the pseudocontact shifts enhances the precision of the structure in regions with only few NOE restraints and improves the accuracy of the overall structure.  相似文献   

5.
Redox-active Cu(II) complexes are able to form reactive oxygen species (ROS) in the presence of oxygen and reducing agents. Recently, Faller et al. reported that ROS generation by Cu(II) ATCUN complexes is not as high as assumed for decades. High complex stability results in silencing of the Cu(II)/Cu(I) redox cycle and therefore leads to low ROS generation. In this work, we demonstrate that an exchange of the α-amino acid Gly with the β-amino acid β-Ala at position 2 (Gly2→β-Ala2) of the ATCUN motif reinstates ROS production (OH and H2O2). Potentiometry, cyclic voltammetry, EPR spectroscopy and DFT simulations were utilized to explain the increased ROS generation of these β-Ala2-containing ATCUN complexes. We also observed enhanced oxidative cleavage activity towards plasmid DNA for β-Ala2 compared to the Gly2 complexes. Modifications with positively charged Lys residues increased the DNA affinity through electrostatic interactions as determined by UV/VIS, fluorescence, and CD spectroscopy, and consequently led to a further increase in nuclease activity. A similar trend was observed regarding the cytotoxic activity of the complexes against several human cancer cell lines where β-Ala2 peptide complexes had lower IC50 values compared to Gly2. The higher cytotoxicity could be attributed to an increased cellular uptake as determined by ICP-MS measurements.  相似文献   

6.
The synthetic peptide encompassing residues 106-126 (PrP106-126, KTNMKHMAGAAAAGAVVGGLG) of the human prion protein was considered for its binding properties toward copper(II), manganese(II) and zinc(II) at pH 5.7. 1H and 13C 1D spectra, 1H spin-lattice relaxation rates, and 1H-15N and 1H-13C HSQC 2D experiments were obtained in the absence and in the presence of metal ions. While Zn(II) was found to yield negligible effects upon any NMR parameter, metal-peptide association was demonstrated by the paramagnetic effects of Cu(II) and Mn(II) upon 1D and 2D spectra. Delineation of structures of metal complexes was sought by interpreting the paramagnetic effect on 1H spin-lattice relaxation rates. Exchange of peptide molecules from the metal coordination sphere was shown to provide sizable contribution to the observed relaxation rates. Such contribution was calculated in the case of Cu(II); whereas the faster paramagnetic rates of peptide molecules bound to Mn(II) were determining spin-lattice relaxation rates almost exclusively dominated by exchange. Proton-metal distances were therefore evaluated in the case of the Cu(II) complex only and used as restraints in molecular dynamics calculations where from the structure of the complex was obtained. The peptide was shown to bind copper through the imidazole nitrogen and the ionized amide nitrogen of His-111 and the amino-terminal group with the terminal carboxyl stabilizing the coordination sphere through ionic interactions. The data were interpreted as to demonstrate that the hydrophobic C-terminal region was not affecting the copper-binding properties of the peptide and that this hydrophobic tail is left free to interact with other target molecules. As for the complex with Mn(II), qualitative information was obtained on carbonyl oxygens of Gly-124 and Leu-125, beyond the terminal Gly-126 carboxyl, being at close distance from the metal ion, that also interacts, most likely, through a hydrogen bond of metal-bound water, with the imidazole ring of His-111.  相似文献   

7.
8.
Pseudocontact shifts (PCSs) arise in paramagnetic systems in which the susceptibility tensor is anisotropic. PCSs depend upon the distance from the paramagnetic center and the position relative to the susceptibility tensor, and they can be used as structural restraints in protein structure determination. We show that the use of (1)H-detected solid-state correlations provides facile and rapid detection and assignment of site-specific PCSs, including resolved (1)H PCSs, in a large metalloprotein, Co(2+)-substituted superoxide dismutase (Co(2+)-SOD). With only 3 mg of sample and a small set of experiments, several hundred PCSs were measured and assigned, and these PCSs were subsequently used in combination with (1)H-(1)H distance and dihedral angle restraints to determine the protein backbone geometry with a precision paralleling those of state-of-the-art liquid-state determinations of diamagnetic proteins, including a well-defined active site.  相似文献   

9.
The utility of a three-residue Cu2+ binding motif (ATCUN domain) for studying intermolecular interactions is demonstrated. By comparing a set of 1H-15N correlation spectra recorded on complexes of calmodulin (CaM) and peptides with the ATCUN tag in the presence and absence of Cu2+ the two possible canonical binding orientations of the peptide can be rapidly distinguished. The methodology is confirmed with studies of complexes of CaM and peptides from myosin light chain kinase and CaM kinase kinase, for which high-resolution structures are available, and then applied to a complex with CaM kinase I for which structural data has not been obtained. The orientation of the CaM kinase I and myosin light chain kinase peptides are shown to be identical. In the case of a complex of CaM with a peptide for which structural information is not available, the present methodology, in combination with 1H-15N residual dipolar couplings measured on CaM, and the database of existing CaM-peptide structures, allows a homology model to be built rapidly and with confidence.  相似文献   

10.
A major challenge for the structure determination of integral membrane proteins by solution NMR spectroscopy is the limited number of NOE restraints in these systems stemming from extensive deuteration. Paramagnetic relaxation enhancement (PRE) by means of nitroxide spin-labels can provide valuable long-range distance information but, in practice, has limits in its application to membrane proteins because spin-labels are often incompletely reduced in highly apolar environments. Using the integral membrane protein OmpA as a model system, we introduce a method of parallel spin-labeling with paramagnetic and diamagnetic labels and show that distances in the range 15-24 Angstroms can be readily determined. The protein was labeled at 11 water-exposed and lipid-covered sites, and 320 PRE distance restraints were measured. The addition of these restraints resulted in significant improvement of the calculated backbone structure of OmpA. Structures of reasonable quality can even be calculated with PRE distance restraints only, i.e., in the absence of NOE distance restraints.  相似文献   

11.
X-band and Q-band electron paramagnetic resonance (EPR) spectra of Cu(2+) in BaF(2) crystal were recorded in the temperature range of 4.2-200 K. Spin-Hamiltonian parameters of single Cu(2+) complexes and of Cu(2+)-Cu(2+) pairs were derived and discussed. A special attention was paid to the dimeric species. Their molecular ground state configuration was found as having antiferromagnetic intradimer coupling with the singlet-triplet splitting J=-35 cm(-1). The zero-field splitting being D=0.0365 cm(-1) at 4.2 K increases with temperature as an effect of thermal population of excited dimer configurations. Electron spin echo (ESE) method was used for measurements of electron spin lattice and phase relaxation. The spin-lattice relaxation data show that except for coupling to the host lattice phonons the Cu(2+) ions are involved in local mode motions with energy of 82 cm(-1). Phase relaxation (ESE dephasing) of single Cu(2+) ions is due to spin diffusion at low temperatures. This relaxation is hampered for temperatures higher than 30 K due to the triplet state population of neighboring Cu(2+)-Cu(2+) dimers, which disturb dipolar coupling between Cu(2+) ions. For higher temperatures the relaxation is dominated by Raman T(1) processes. Fourier transform ESE spectrum displays dipolar Cu-F splitting which allowed determination of the off-center shift of Cu(2+) as delta(s)=0.132 nm. The dynamical effects observed in EPR spectra and in electron spin relaxation both for single Cu(2+) ions and Cu(2+)-Cu(2+) pairs are discussed as due to jumps between six off-center positions in the crystal unit cell and jumps between various dimer configurations.  相似文献   

12.
The structure of a catalytic intermediate with important implications for the interpretation of the stereochemical outcome of the palladium complex catalyzed allylic substitution with phosphino-oxazoline (PHOX) ligands is determined by liquid state NMR. The complex displays a novel structure that is highly distorted compared with other palladium eta2-olefin complexes known so far. The structure has been determined from nuclear overhauser data (NOE), scalar coupling constants, and long range projection angle restraints derived from dipole dipole cross-correlated relaxation of multiple quantum coherence. The latter restraints have been implemented into a distance geometry protocol. The projection angle restraints yield a higher precision in the determination of the relative orientation of the two molecular moieties and are essential to provide an exact structural definition of the olefinic part of the catalytic intermediate with respect to the ligand.  相似文献   

13.
(15)N R(2)/R(1) relaxation data contain information on molecular shape and size as well as on bond vector orientations relative to the diffusion tensor. Since the diffusion tensor can be directly calculated from the molecular coordinates, direct inclusion of (15)N R(2)/R(1) restraints in NMR structure calculations without any a priori assumptions is possible. Here we show that (15)N R(2)/R(1) restraints are particularly valuable when only sparse distance restraints are available. Using three examples of proteins of varying size, namely, GB3 (56 residues), ubiquitin (76 residues), and the N-terminal domain of enzyme I (EIN, 249 residues), we show that incorporation of (15)N R(2)/R(1) restraints results in large and significant increases in coordinate accuracy that can make the difference between being able or unable to determine an approximate global fold. For GB3 and ubiquitin, good coordinate accuracy was obtained using only backbone hydrogen-bond restraints supplemented by (15)N R(2)/R(1) relaxation restraints. For EIN, the global fold could be determined using sparse nuclear Overhauser enhancement (NOE) distance restraints involving only NH and methyl groups in conjunction with (15)N R(2)/R(1) restraints. These results are of practical significance in the study of larger and more complex systems, where the increasing spectral complexity and number of chemical shift degeneracies reduce the number of unambiguous NOE assignments that can be readily obtained, resulting in progressively reduced NOE coverage as the size of the protein increases.  相似文献   

14.
The DNA cleavage chemistry of a series of metallopeptides based on the amino-terminal Cu and Ni (ATCUN) binding motif of proteins has been studied. Specifically, the impact of the positioning of charged Lys side chains and their stereochemistry on metal reduction potentials and DNA cleavage reactivity have been quantitatively evaluated. Both Cu and Ni metallopeptides show a general increase in reactivity toward DNA with an increasing number of Lys residues, while a corresponding decrease in complex reduction potential reflects the enhanced sigma-donor character of the Lys side chain relative to that of Gly. Placement of Lys at the first position in the tripeptide ligand sequence resulted in a greater increase in DNA cleavage reactivity, relative to placement at the second position, while a switch from an l-Lys to a d-Lys typically resulted in enhanced reactivity, as well as perturbations of reduction potential. In the case of Cu peptides, reactivity was enhanced with both increasing positive charge density on the peptide and stabilization of the Cu3+ state. However, for Ni peptides, while the general trends are the same, the correlation with redox behavior was less pronounced. Most likely these differences in specific trends for the Cu and Ni complexes reflect the distinct coordination preferences for Cu3+/2+ and Ni3+/2+ oxidation states, and the consequent distinct positioning of metal-associated reactive oxygen species, as well as the orientation of the DNA-associated complex. Thus, the amino acid composition and stereochemistry of ATCUN metallopeptides can tune the intrinsic reactivities of these systems (their ability to promote formation and activity of metal-associated ROS) as well as their overall structural features, and both of these aspects appear to influence their reactivity and efficiency of DNA strand scission.  相似文献   

15.
In a wide variety of proteins, insolubility presents a challenge to structural biology, as X-ray crystallography and liquid-state NMR are unsuitable. Indeed, no general approach is available as of today for studying the three-dimensional structures of membrane proteins and protein fibrils. We here demonstrate, at the example of the microcrystalline model protein Crh, how high-resolution 3D structures can be derived from magic-angle spinning solid-state NMR distance restraints for fully labeled protein samples. First, we show that proton-mediated rare-spin correlation spectra, as well as carbon-13 spin diffusion experiments, provide enough short, medium, and long-range structural restraints to obtain high-resolution structures of this 2 x 10.4 kDa dimeric protein. Nevertheless, the large number of 13C/15N spins present in this protein, combined with solid-state NMR line widths of about 0.5-1 ppm, induces substantial ambiguities in resonance assignments, preventing 3D structure determination by using distance restraints uniquely assigned on the basis of their chemical shifts. In the second part, we thus demonstrate that an automated iterative assignment algorithm implemented in a dedicated solid-state NMR version of the program ARIA permits to resolve the majority of ambiguities and to calculate a de novo 3D structure from highly ambiguous solid-state NMR data, using a unique fully labeled protein sample. We present, using distance restraints obtained through the iterative assignment process, as well as dihedral angle restraints predicted from chemical shifts, the 3D structure of the fully labeled Crh dimer refined at a root-mean-square deviation of 1.33 A.  相似文献   

16.
Solid‐state nuclear magnetic resonance (NMR) spectroscopy has been successfully applied to elucidate the atomic‐resolution structures of insoluble proteins. The major bottleneck is the difficulty to obtain valuable long‐distance structural information. Here, we propose the use of distance restraints as long as 32 Å, obtained from the quantification of transverse proton relaxation induced by a methanethiosulfonate spin label (MTSL). Combined with dipolar proton–proton distance restraints, this method allows us to obtain protein structures with excellent precision from single spin‐labeled 1 mg protein samples using fast magic angle spinning.  相似文献   

17.
NMR structure of a cyclic polyamide-DNA complex   总被引:3,自引:0,他引:3  
The solution structure of a cyclic polyamide ligand complexed to a DNA oligomer, derived from NMR restrained molecular mechanics, is presented. The polyamide, cyclo-gamma-ImPyPy-gamma-PyPyPy-, binds to target DNA with a nanomolar dissociation constant as characterized by quantitative footprinting previously reported. 2D (1)H NMR data were used to generate distance restraints defining the structure of this cyclic polyamide with the DNA duplex d(5'-GCCTGTTAGCG-3'):d(5'-CGCTAACAGGC-3'). Data interpretation used complete relaxation matrix analysis of the NOESY cross-peak intensities with the program MARDIGRAS. The NMR-based distance restraints (276 total) were applied in restrained molecular dynamics calculations using a solvent model, yielding structures with an rmsd for the ligand and binding site of approximately 1 A. The resulting structures indicate some distortion of the DNA in the binding site. The constraints from cyclization lead to altered stacking of the rings in the halves of the cyclic ligand relative to unlinked complexes. Despite this, the interactions with DNA are very similar to what has been found in unlinked complexes. Measurements of ligand amide and DNA imino proton exchange rates indicate very slow dissociation of the ligand and show that the DNA can undergo opening fluctuations while the ligand is bound although the presence of the ligand decreases their frequency relative to the free DNA.  相似文献   

18.
The formation of the sitting-atop (SAT) complexes of 5,10,15,20-tetraphenylporphyrin (H(2)tpp), 5,10,15,20-tetrakis(4-chlorophenyl)porphyrin (H(2)t(4-Clp)p), 5,10,15,20-tetramesitylporphyrin (H(2)tmp), and 2,3,7,8,12,13,17,18-octaethylporphyrin (H(2)oep) with the Cu(II) ion was spectrophotometrically confirmed in aqueous acetonitrile (AN), and the formation rates were determined as a function of the water concentration (C(W)). The decrease in the conditional first-order rate constants with the increasing C(W) was reproduced by taking into consideration the contribution of [Cu(H(2)O)(an)(5)](2+) in addition to [Cu(an)(6)](2+) to form the Cu(II)-SAT complexes. The second-order rate constants for the reaction of [Cu(an)(6)](2+) and [Cu(H(2)O)(an)(5)](2+) at 298 K were respectively determined as follows: (4.1 +/- 0.2) x 10(5) and (3.6 +/- 0.2) x 10(4) M(-1) s(-1) for H(2)tpp, (1.15 +/- 0.06) x 10(5) M(-1) s(-1) and negligible for H(2)t(4-Clp)p, and (4.8 +/- 0.3) x 10(3) and (1.3 +/- 0.3) x 10(2) M(-1) s(-1) for H(2)tmp. Since the reaction of H(2)oep was too fast to observe the reaction trace due to the dead time of 2 ms for the present stopped-flow technique, the rate constant was estimated to be greater than 1.5 x 10(6) M(-1) s(-1). According to the structure of the Cu(II)-SAT complexes determined by the fluorescent XAFS measurements, two pyrrolenine nitrogens of the meso-substituted porphyrins (H(2)tpp and H(2)tmp) bind to the Cu(II) ion with a Cu-N(pyr) distance of ca. 2.04 A, while those of the beta-pyrrole-substituted porphyrin (H(2)oep) coordinate with the corresponding bond distance of 1.97 A. The shorter distance of H(2)oep is ascribed to the flexibility of the porphyrin ring, and the much greater rate for the formation of the Cu(II)-SAT complex of H(2)oep than those for the meso-substituted porphyrins is interpreted as due to a small energetic loss at the porphyrin deformation step during the formation of the Cu(II)-SAT complex. The overall formation constants, beta(n), of [Cu(H(2)O)(n)()(an)(6)(-)(n)](2+) for the water addition in aqueous AN were spectrophotometrically determined at 298 K as follows: log(beta(1)/M(-1)) = 1.19 +/- 0.18, log(beta(2)/M(-2)) = 1.86 +/- 0.35, and log(beta(3)/M(-3)) = 2.12 +/- 0.57. The structure parameters around the Cu(II) ion in [Cu(H(2)O)(n)(an)(6-n)](2+) were determined using XAFS spectroscopy.  相似文献   

19.
Membrane proteins play an important role in many biological functions. Solid-state NMR spectroscopy is uniquely suited for studying structure and dynamics of membrane proteins in a membranous environment. The major challenge to obtain high quality solid-state NMR spectra of membrane proteins is sensitivity, due to limited quantities of labeled high-molecular-weight proteins. Here we demonstrate the incorporation of paramagnetic metal (Cu(2+)) ions, through either EDTA or a chelator lipid, into membrane protein samples for rapid data collection under fast magic-angle spinning (MAS) and low power (1)H decoupling. Spectral sensitivity of DsbB (20 kDa), an integral membrane protein, more than doubles in the same experimental time due to (1)H T(1) relaxation enhancement by Cu(2+) ions, with DsbB native fold and active site intact. This technique can be implemented to acquire multidimensional solid-state NMR spectra for chemical shift assignments and structure elucidation of large membrane proteins with small sample quantities.  相似文献   

20.
Electrospray ionization Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICRMS) was used to investigate metal ion interactions of the 18 amino acid peptide fragment B18 (LGLLLRHLRHHSNLLANI), derived from the membrane-associated protein bindin. The peptide sequence B18 represents the minimal membrane-binding motif of bindin and resembles a putative fusion peptide. The histidine-rich peptide has been shown to self-associate into distinct supramolecular structures, depending on the presence of Zn(2+) and Cu(2+). We examined the binding of B18 to the metal ions Cu(2+), Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+). For Cu(2+), we compared the metal binding affinities of the wild-type B18 peptide with those of its mutants in which one, two or three histidine residues have been replaced by serines. Upon titration of B18 with Cu(2+) ions, we found sequential binding of two Cu(2+) ions with dissociation constants of approximately 34 and approximately 725 micro M. Mutants of B18, in which one histidine residue is replaced by serine, still exhibit sequential binding of two copper ions with affinities for the first Cu(2+) ion comparable to that of wild-type B18 peptide, but with a greatly reduced affinity for the second Cu(2+) ion in mutants H112S and H113S. For mutants in which two histidines are replaced by serines, the affinity for the first Cu(2+) ion is reduced approximately 3-10 times in comparison with B18. The mutant in which all three histidine residues are replaced by serines exhibits an approximately 14-fold lower binding for the first Cu(2+) ion compared with B18. For the other metal ions under investigation (Zn(2+), Mg(2+), Ca(2+), Mn(2+) and La(3+)), a modest affinity to B18 was detected binding to the peptide in a 1 : 1 stoichiometry. Our results show a high affinity of the wild-type fusogenic peptide B18 for Cu(2+) ions whereas the Zn(2+) affinity was found to be comparable to that of other di- and trivalent metal ions.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号