首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
A supersonic flow in the near wake behind a cylinder is considered. Base pressure distributions behind a circular cylinder for various Mach numbers M are obtained and analyzed by means of direct numerical simulation based on high-order approximation algorithms. For M = 2.46, the results obtained in the present study are compared with available experimental and numerical data. Generation of turbulent kinetic energy is calculated for various Mach numbers.  相似文献   

3.
A detailed validation study is presented for the detached-eddy simulation (DES) of the flow around a circular cylinder at a high sub-critical Reynolds number. Good comparability with unsteady experimental field data is facilitated by the confined and clearly-defined geometry, although some uncertainty remains regarding the free stream turbulence intensity. The combination of DES with an appropriate low-dissipative hybrid numerical convection scheme and high temporal resolution delivers excellent agreement with the experiment for the time and phase-averaged fields as well as the spectral content. A strong sensitivity of the solution to the numerical time step size has been identified, which is attributed to time-filtering effects damping the development of resolved turbulence in the early shear layer. Recommendations are made concerning a CFL-type criterion for the temporal resolution of DES and future studies involving a still finer time step are outlined.  相似文献   

4.
The unsteady two-dimensional laminar flow past a circular cylinder encased in a perforated sheath is numerically simulated. On the basis of the calculated results a technique for controlling the wake flow by diverting a portion of the flow from the forward stagnation point through internal ducts to orifices in the sheath located in the separation zone, is analyzed.  相似文献   

5.
A finite difference simulation method for a viscous flow around a circular cylinder sinusoidally oscillating at low Keulegan-Carpenter numbers is presented. Navier-Stokes equations in finite difference form are solved on a moving grid system, based on a time dependent coordinate transformation. Evolution with time of the flow structures induced by a circular cylinder performing sinusoidal oscillations in a fluid at rest, by means of stream lines, pressure contours and vortex shedding is studied in detail at Keulegan-Carpenter numbers, Kc = 9.4 and 14. The time dependent drag and lift are also explained.  相似文献   

6.
方柱绕流的数值模拟   总被引:6,自引:0,他引:6  
童兵  祝兵  周本宽 《力学季刊》2002,23(1):77-81
采用有限差分法,对雷诺数为2.2×10~4的方柱绕流进行了大涡模拟(简称LES)。运用时间分裂控制(Split-Operator)法,将N-S方程分为对流步、扩散步和传播步。对Smagorinsky假设在近壁区的发散问题用两层模型进行处理。对流项用迎风—中心差分格式模拟,压力方程用SOR法迭代求解。计算得到的沿对称线的时均顺流向速度与文献上的实验结果进行了比较,结果吻合较好,同时还对绕方柱流的流场结构进行了分析研究。  相似文献   

7.
A numerical study is performed of flow behind a rotationally oscillating circular cylinder in a uniform flow by solving the two-dimensional incompressible Navier-Stokes equations. The flow behavior in lock-on regime and the timing of vortex formation from the oscillating cylinder are studied. When the frequency of excitation of the cylinder is in the vicinity of the natural vortex formation frequency, a lock-on vortex formation regime appears. As the excitation frequency being increased relative to the natural frequency the initially formed vorticity concentration switches to the opposite side of the cylinder. The effects of oscillating frequency and amplitude on the vortex structures formed in the near wake of the cylinder are also investigated. Based on the present calculated results, some complicated vortex patterns are identified and are consistent with the previous experimental visualizations.  相似文献   

8.
9.
高速列车紊态外流场的数值模拟研究   总被引:4,自引:0,他引:4  
高速列车是近地运行的细长、庞大物体,它的空气绕流问题有其特殊性,本文以不可压缩粘性流体的Navier-Stokes方程和k-ε两方程紊流模型为基础,采用有限元方法求解了高速列车三维紊态外流场,针对有限元法应用于流场计算时常出现的问题,采用分离式解法,非对称矩阵一维变带宽压缩存储及带宽极小化等方法,最大限度地降低计算存储量;并采用罚函数法,集中质量矩阵,缩减积分法,带参数迭代法以及 引入松弛因子等技术,提出了一套用有限元法计算非线性问题的求解方法,提高了收敛速度的计算严谨,计算方法和计算结果对列车空气动力学的深入研究有一定的帮助。  相似文献   

10.
管道内差压驱动机器人相关流场数值模拟研究   总被引:2,自引:0,他引:2  
管道内流场对机器人的驱动力是设计管内机器人外形尺寸的基本依据,本文用数值方法计算了管道内检测机器人所受的差压驱动力。在合理提出一些基本假设后,用一阶迎风和中心差分格式离散管道内检测机器人附近流场的控制方程,用SIMPLE算法求得了不同入口流速下机器人附近的流场分布,以及流场对机器人的驱动力。结果表明雷诺数为1875时,机器人下游流场变为湍流;当雷诺数为60000时,机器人下游流场变为非定常流,出现周期性流动;计算数据还表示驱动力只与管内平均流速有关而与运行压力无关。  相似文献   

11.
Noises of flow around parallel rectangular cylinders are likely to be caused by wind flow. According to the wind tunnel experiment, it is known that there are three kinds of special noises. Two kinds of noises occur when the wind comes from a perpendicular direction to the cylinders. These noises are caused by the vortex excited oscillation. Another noise occurs when the wind comes from an inclined direction to the cylinders. This noise is very high frequency, and its mechanism is not clear. Therefore in this study, the three dimensional numerical flow simulation is performed to clarify the high frequency noise of flow around parallel rectangular cylinders.  相似文献   

12.
Based on the finite volume method, the flow past a spinning circular cylinder at a low subcritical Reynolds number (Re =1 × 10 5), high subcritical Reynolds number (Re =1.3 ×10 5), and critical Reynolds number (Re =1.4 ×10 5) were each simulated using the Navier-Stokes equations and the γ-Re ?? transition model coupled with the SST k?ω turbulence model. The system was solved using an implicit algorithm. The freestream turbulence intensity decay was effectively controlled by the source term method proposed by Spalart and Rumsey. The variations in the Magnus force as a function of the spin ratio, α were obtained for the three Reynolds numbers, and the flow mechanism was analyzed. The results indicate that the asymmetric transitions induced by spin affect the asymmetric separations at the top and bottom surfaces of the circular cylinder, which further affects the pressure distributions at the top and bottom surfaces of the circular cylinder and ultimately result in a negative Magnus force, whose direction is opposite to that of the classical Magnus force. This study is the first to use a numerical simulation method to predict a negative Magnus force acting on a spinning circular cylinder. At the low subcritical Reynolds number, the Magnus force remained positive for all spin ratios. At the high subcritical Reynolds number, the sign of the Magnus force changed twice over the range of the spin ratio. At the critical Reynolds number, the sign of the Magnus force changed only once over the range of the spin ratio. For relatively low spin ratios, the Magnus force significantly differed by Reynolds number; however, this variation diminished as the spin ratio increased.  相似文献   

13.
Supersonic perfect-gas flow past a circular cylinder with an isothermal surface is investigated at the Mach number 5 and Reynolds numbers ranging from 30 to 500,000. It is shown that two branches of the numerical solution of the problem can exist. On the first branch the following flow patterns are successively realized as Re is increased: separationless flow, flow with formation of a local separation zone, and flow with formation of a global separation zone. On the second branch the flow pattern with a local separation zone is observed at all Reynolds numbers; at a certain value of Re this solution jumps to the first branch.  相似文献   

14.
The flow over a circular cylinder at Reynolds number 2 × 104 was predicted numerically using the technique of large-eddy simulation (LES). Both incompressible and compressible flow formulations were used. The present results obtained at a low-Mach number (M?=?0.2) revealed significant inaccuracies like spurious oscillations of the compressible flow solution. A detailed investigation of such phenomena was carried out. It was found that application of blended central-difference or linear-upwind schemes could damp artificial waves significantly. However, this type of schemes has a too dissipative nature compared to pure central-differences. The incompressible flow results were found to be consistent with the existing numerical studies as well as with the experimental data. Basic flow features and flow mechanics were found to be in good agreement with existing experimental data and consistent with previously obtained LES. Special emphasis was put on the spectral analysis. Here, the classical Fourier transform as well as the continuous wavelet transform were applied. Based on the latter, the separated shear-layer instability was precisely clarified. It was found that the Reynolds number dependency between vortex shedding and shear-layer instabilities had a power law relation with n?=?0.5.  相似文献   

15.
The main objective of the present experimental study is to analyse the turbulence properties in unsteady flows around bluff body wakes and to provide a database for improvement and validation of turbulence models, concerning the present class of non-equilibrium flows. The flow around a circular cylinder with a low aspect ratio () and a high blockage coefficient () is investigated. This confined environment is used in order to allow direct comparisons with realisable 3D Navier–Stokes computations avoiding ‘infinite’ conditions. The flow is investigated in the critical regime at Reynolds number 140,000. A cartography of the velocity fields in the near wake of the cylinder is obtained by PIV and Stereoscopic PIV techniques. Statistical means and phase-averaged quantities are determined. Furthermore, POD analysis is performed on the data set in order to extract coherent structures of the flow and to compare the results with those obtained by the conditional sampling technique. The Reynolds stresses, the strain-rate and vorticity fields as well as the turbulence production terms are determined.  相似文献   

16.
17.
Self-activated feathers are used by almost all birds to adapt their wing characteristics to delay stall or to moderate its adverse effects (e.g., during landing or sudden increase in angle of attack due to gusts). Some of the feathers are believed to pop up as a consequence of flow separation and to interact with the flow and produce beneficial modifications of the unsteady vorticity field. The use of self adaptive flaplets in aircrafts, inspired by birds feathers, requires the understanding of the physical mechanisms leading to the mentioned aerodynamic benefits and the determination of the characteristics of optimal flaps including their size, positioning and ideal fabrication material. In this framework, this numerical study is divided in two parts. Firstly, in a simplified scenario, we determine the main characteristics that render a flap mounted on an aerofoil at high angle of attack able to deliver increased lift and improved aerodynamic efficiency, by varying its length, position and its natural frequency. Later on, a detailed direct numerical simulation analysis is used to understand the origin of the aerodynamic benefits introduced by the flaplet movement induced by the interaction with the flow field. The parametric study that has been carried out, reveals that an optimal flap can deliver a mean lift increase of about 20% on a NACA0020 aerofoil at an incidence of 20 o degrees. The results obtained from the direct numerical simulation of the flow field around the aerofoil equipped with the optimal flap at a chord Reynolds number of 2 × 104 shows that the flaplet movement is mainly induced by a cyclic passage of a large recirculation bubble on the aerofoil suction side. In turns, when the flap is pushed downward, the induced plane jet displaces the trailing edge vortices further downstream, away from the wing, moderating the downforce generated by those vortices and regularising the shedding cycle that appears to be much more organised when the optimal flaplet configuration is selected.  相似文献   

18.
This paper considers methods for controlling secondary flows near an oscillating circular cylinder by changing two process control parameters: the dimensionless amplitude and the vibrational Reynolds number. A direct numerical modeling study is performed. It is shown that by varying the indicated parameters in a relatively small range, it is possible not only to intensify mass transfer processes, but also to change the direction of the main secondary flows.  相似文献   

19.
In oil industries, wells are mostly cased and perforated rather than completing the producing formation as open-hole. This study concentrates on the steady-state flow behaviour of a single-phase fluid in and around perforated completion tunnels (up to 50 inches long) including inertial effects (Non-Darcy flow). It is shown that the pressure drop inside long perforated tunnels under high flow velocity conditions is negligible compared to that around the perforated region within the porous medium. The results also indicate that the impact of perforation parameters varies with increasing fluid velocity but approaches an asymptotic value at very high flow velocity. The perforation length is the most important parameter whereas perforation radius, rock and fluid properties have little impact on the perforation performance.  相似文献   

20.
The flow over a circular cylinder at Reynolds number 3900 and Mach number 0.2 was predicted numerically using the technique of large-eddy simulation. The computations were carried out with an O-type curvilinear grid of size of 300 × 300 × 64. The numerical simulations were performed using a second-order finite-volume method with central-difference schemes for the approximation of convective terms. A conventional Smagorinsky and a dynamic k-equation eddy viscosity sub-grid scale models were applied. The integration time interval for data sampling was extended up to 150 vortex shedding periods for the purpose of obtaining a fully converged mean flow field. The present numerical results were found to be in good agreement with existing experimental data and previously obtained large-eddy simulation results. This gives an indication on the adequacy and accuracy of the selected large-eddy simulation technique implemented in the OpenFOAM toolbox.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号