首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Let G be a simple graph of order at least 2.A VE-total-coloring using k colors of a graph G is a mapping f from V (G) E(G) into {1,2,···,k} such that no edge receives the same color as one of its endpoints.Let C(u)={f(u)} {f(uv) | uv ∈ E(G)} be the color-set of u.If C(u)=C(v) for any two vertices u and v of V (G),then f is called a k-vertex-distinguishing VE-total coloring of G or a k-VDVET coloring of G for short.The minimum number of colors required for a VDVET coloring of G is denoted by χ ve vt (G) and it is called the VDVET chromatic number of G.In this paper we get cycle C n,path P n and complete graph K n of their VDVET chromatic numbers and propose a related conjecture.  相似文献   

2.
§1 IntroductionLet Pn,Cn,and Kn be the path,the cycle,and the complete graph of order n,respectively.The complete bipartite graph with cardinalities ofparts m and n is denoted byKm,n.Disjoint union of n copies of a graph G is denoted by n G;Gis the complement of agraph G.A setof pairwise non-adjacent vertices in a graph is called stable.A maximum stableset of a graph G has the largest cardinalityα( G) among all stable sets of G;α( G) is calledthe stability number of G.Let Z be a s…  相似文献   

3.
Let G be a simple graph. A total coloring f of G is called an E-total coloring if no two adjacent vertices of G receive the same color, and no edge of G receives the same color as one of its endpoints. For an E-total coloring f of a graph G and any vertex x of G, let C(x) denote the set of colors of vertex x and of the edges incident with x, we call C(x) the color set of x. If C(u)≠ C(v) for any two different vertices u and v of V(G), then we say that f is a vertex-distinguishing E-total coloring of G or a VDET coloring of G for short. The minimum number of colors required for a VDET coloring of G is denoted by χ_(vt)~e(G) and is called the VDET chromatic number of G. The VDET coloring of complete bipartite graph K_(7,n)(7 ≤ n ≤ 95) is discussed in this paper and the VDET chromatic number of K_(7,n)(7 ≤ n ≤ 95) has been obtained.  相似文献   

4.
正A Comparison between the Metric Dimension and Zero Forcing Number of Trees and Unicyclic Graphs Linda EROH Cong X.KANG Eunjeong YI Abstract The metric dimension dim(G)of a graph G is the minimum number of vertices such that every vertex of G is uniquely determined by its vector of distances to the chosen vertices.The zero forcing number Z(G)of a graph G is the minimum cardinality of a set S of  相似文献   

5.
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) ≠ C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χ_(vt)~(ie) (G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K_(8,n)are discussed in this paper. Particularly, the VDIET chromatic number of K_(8,n) are obtained.  相似文献   

6.
《数学学报》2011,(3):529-532
<正>Group Connectivity and Group Colorings of Graphs—A Survey Hong-Jian LAI Xiangwen LI Yehong SHAO Mingquan ZHAN Abstract In 1950s,Tutte introduced the theory of nowhere-zero flows as a tool to investigate the coloring problem of maps,together with his most fascinating conjectures on nowhere-zero flows.These have been extended by Jaeger et al.in 1992 to group connectivity,the nonhomogeneous form of nowhere-zero flows.Let G be a 2-edge-connected undirected graph,A be an (additive) abelian group and A* = A - {0}.The graph G is A-connected if G has an orientation D(G) such that for every map b:V(G)(?) A satisfying∑_(v∈V(G)) b(v) = 0,there is a function f:E(G)(?) A* such that for each vertex v∈V(G),the total amount of f-values on the edges directed out from v minus the total amount of f-values on the edges directed into v is equal to  相似文献   

7.
《数学季刊》2016,(2):147-154
Let G be a simple graph. An IE-total coloring f of G is a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color. For each vertex x of G, let C(x) be the set of colors of vertex x and edges incident to x under f. For an IE-total coloring f of G using k colors, if C(u) 6= C(v) for any two different vertices u and v of G, then f is called a k-vertex-distinguishing IE-total-coloring of G or a k-VDIET coloring of G for short. The minimum number of colors required for a VDIET coloring of G is denoted by χievt(G) and is called vertex-distinguishing IE-total chromatic number or the VDIET chromatic number of G for short. The VDIET colorings of complete bipartite graphs K8,n are discussed in this paper. Particularly, the VDIET chromatic number of K8,n are obtained.  相似文献   

8.
The authors recently defined a new graph invariant denoted by Ω(G) only in terms of a given degree sequence which is also related to the Euler characteristic. It has many important combinatorial applications in graph theory and gives direct information compared to the better known Euler characteristic on the realizability, connectedness, cyclicness, components, chords, loops etc. Many similar classification problems can be solved by means of Ω. All graphs G so that Ω(G) ≤-4 are shown to be disconnected, and if Ω(G) ≥-2, then the graph is potentially connected. It is also shown that if the realization is a connected graph and Ω(G) =-2, then certainly the graph should be a tree.Similarly, it is shown that if the realization is a connected graph G and Ω(G) ≥ 0, then certainly the graph should be cyclic. Also, when Ω(G) ≤-4, the components of the disconnected graph could not all be cyclic and if all the components of G are cyclic, then Ω(G) ≥ 0. In this paper, we study an extremal problem regarding graphs. We find the maximum number of loops for three possible classes of graphs.We also state a result giving the maximum number of components amongst all possible realizations of a given degree sequence.  相似文献   

9.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

10.
Let G be a simple graph.An IE-total coloring f of G refers to a coloring of the vertices and edges of G so that no two adjacent vertices receive the same color.Let C(u) be the set of colors of vertex u and edges incident to u under f.For an IE-total coloring f of G using k colors,if C(u)=C(v) for any two different vertices u and v of V(G),then f is called a k-vertex-distinguishing IE-total-coloring of G,or a k-VDIET coloring of G for short.The minimum number of colors required for a VDIET coloring of G is denoted by χ ie vt (G),and it is called the VDIET chromatic number of G.We will give VDIET chromatic numbers for complete bipartite graph K4,n (n≥4),K n,n (5≤ n ≤ 21) in this article.  相似文献   

11.
Let G be a finite group. A Cayley graph over G is a simple graph whose automorphism group has a regular subgroup isomorphic to G. A Cayley graph is called a CI-graph(Cayley isomorphism) if its isomorphic images are induced by automorphisms of G. A well-known result of Babai states that a Cayley graph Γ of G is a CI-graph if and only if all regular subgroups of Aut(Γ) isomorphic to G are conjugate in Aut(Γ). A semi-Cayley graph(also called bi-Cayley graph by some authors) over G is a simple graph whose automorphism group has a semiregular subgroup isomorphic to G with two orbits(of equal size). In this paper, we introduce the concept of SCI-graph(semi-Cayley isomorphism)and prove a Babai type theorem for semi-Cayley graphs. We prove that every semi-Cayley graph of a finite group G is an SCI-graph if and only if G is cyclic of order 3. Also, we study the isomorphism problem of a special class of semi-Cayley graphs.  相似文献   

12.
A matching M of a graph G is an induced matching if no two edges in M arejoined by an edge of G.Let iz(G) denote the total number of induced matchings of G,named iz-index.It is well known that the Hosoya index of a graph is the total number of matchings and the Hosoya index of a path can be calculated by the Fibonacci sequence.In this paper,we investigate the iz-index of graphs by using the Fibonacci-Narayana sequence and characterize some types of graphs with minimum and maximum iz-index,respec...  相似文献   

13.
Let G = (V,E) be a graph without isolated vertices.A set S V is a domination set of G if every vertex in V - S is adjacent to a vertex in S,that is N[S] = V.The domination number of G,denoted by γ(G),is the minimum cardinality of a domination set of G.A set S C V is a paired-domination set of G if S is a domination set of G and the induced subgraph G[S] has a perfect matching.The paired-domination number,denoted by γpr(G),is defined to be the minimum cardinality of a paired-domination set S in G.A subset S V is a power domination set of G if all vertices of V can be observed recursively by the following rules: (i) all vertices in N[S] are observed initially,and (ii) if an observed vertex u has all neighbors observed except one neighbor v,then v is observed (by u).The power domination number,denoted by γp(G),is the minimum cardinality of a power domination set of G.In this paper,the constructive characterizations for trees with γp = γ and γpr = γp are provided respectively.  相似文献   

14.
The total chromatic number XT(G) of a graph G is the minimum number of colors needed to color the elements (vertices and edges) of G such that no adjacent or incident pair of elements receive the same color. G is called Type 1 if XT(G)=Δ(G) 1. In this paper we prove that the join of a complete bipartite graph Km,n and a cycle Cn is of Type 1.  相似文献   

15.
16.
The Entire Coloring of Series-Parallel Graphs   总被引:2,自引:0,他引:2  
The entire chromatic number X_(vef)(G) of a plane graph G is the minimal number of colors needed for coloring vertices, edges and faces of G such that no two adjacent or incident elements are of the same color. Let G be a series-parallel plane graph, that is, a plane graph which contains no subgraphs homeomorphic to K_(4-) It is proved in this paper that X_(vef)(G)≤max{8, △(G) 2} and X_(vef)(G)=△ 1 if G is 2-connected and △(G)≥6.  相似文献   

17.
Let G be a simple graph. Define R(G) to be the graph obtained from G by adding a new vertex e* corresponding to each edge e = (a,b) of G and by joining each new vertex e* to the end vertices a and b of the edge e corresponding to it. In this paper, we prove that the number of matchings of R(G) is completely determined by the degree sequence of vertices of G.  相似文献   

18.
Let G be a nontrivial connected and vertex-colored graph. A subset X of the vertex set of G is called rainbow if any two vertices in X have distinct colors. The graph G is called rainbow vertex-disconnected if for any two vertices x and y of G, there exists a vertex subset S of G such that when x and y are nonadjacent, S is rainbow and x and y belong to different components of G-S; whereas when x and y are adjacent, S + x or S + y is rainbow and x and y belong to different components of(G-xy)-S. For a connected graph G, the rainbow vertex-disconnection number of G, denoted by rvd(G), is the minimum number of colors that are needed to make G rainbow vertexdisconnected. In this paper, we characterize all graphs of order n with rainbow vertex-disconnection number k for k ∈ {1, 2, n}, and determine the rainbow vertex-disconnection numbers of some special graphs. Moreover, we study the extremal problems on the number of edges of a connected graph G with order n and rvd(G) = k for given integers k and n with 1 ≤ k ≤ n.  相似文献   

19.
Let G be a simple graph with no isolated edge. An Ⅰ-total coloring of a graph G is a mapping φ : V(G) ∪ E(G) → {1, 2, ···, k} such that no adjacent vertices receive the same color and no adjacent edges receive the same color. An Ⅰ-total coloring of a graph G is said to be adjacent vertex distinguishing if for any pair of adjacent vertices u and v of G, we have C_φ(u) = C_φ(v), where C_φ(u) denotes the set of colors of u and its incident edges. The minimum number of colors required for an adjacent vertex distinguishing Ⅰ-total coloring of G is called the adjacent vertex distinguishing Ⅰ-total chromatic number, denoted by χ_at~i(G).In this paper, we characterize the adjacent vertex distinguishing Ⅰ-total chromatic number of outerplanar graphs.  相似文献   

20.
For integers k0,r0,a(k,r)-coloring of a graph G is a proper k-coloring of the vertices such that every vertex of degree d is adjacent to vertices with at least min{d,r}diferent colors.The r-hued chromatic number,denoted byχr(G),is the smallest integer k for which a graph G has a(k,r)-coloring.Define a graph G is r-normal,ifχr(G)=χ(G).In this paper,we present two sufcient conditions for a graph to be 3-normal,and the best upper bound of 3-hued chromatic number of a certain families of graphs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号