首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
A computational fluid dynamics solver based on homogeneous cavitation model is employed to compute the two-phase cavitating flow. The model treats the two-phase regime as the homogeneous mixture of liquid and vapour which are locally assumed to be under both kinetic and thermodynamic equilibrium. As our focus is on pressure wave formation, propagation and its impact on cavitation bubble, the compressibility effects of liquid water have to be accounted for and hence the flow is considered to be compressible. The cavitating flow disturbed by the introduced pressure wave is simulated to investigate the unsteady features of cavitation due to the external perturbations. It is observed that the cavity becomes unstable, locally experiencing deformation or collapse, which depends on the shock wave intensity and freestream flow speed.  相似文献   

2.
We report on results of ongoing efforts directed towards the development of a computational model for flow in diseased human carotid arteries. Recent visualizations of the flow in an exact replica of an actual diseased artery have revealed the presence of complex, three-dimensional flow structures characterized by multiple recirculation zones and the formation of unstable jets in both the internal and external arteries. Even though the flow conditions at inlet to the artery were kept steady, the experiments showed that the resulting flow downstream of the inlet was unsteady and chaotic. The present computations aim to determine whether such behavior can be captured with a practical finite-volume computational model, and to examine the impact of spatial and temporal resolution on the quality of simulations.  相似文献   

3.
We investigate an unsteady viscous flow problem where ‘good’ boundary conditions are available on part of the boundary only. This problem appears when the flow phenomena one is interested in are concentrated on part of the flow region and, for reasons of computational economy, are numerically computed in this subregion only. Assuming that outside of the subregion the flow is not subjected to any acceleration forces, we develop an (abstract) combined finite-element/boundary element scheme to compute the flow approximately. This scheme leads to a proof of the existence of a weak solution of the corresponding Navier–Stokes problem as well.  相似文献   

4.
在一个由两块无限竖直平行板组成的管道中,充满着多孔的介质材料,使用Darcy模型(Brinkman模型的推广)的动量方程,连同能量方程,计算不可压缩、粘性、放/吸热流体在该管道中的不稳定自然对流,即Couette流动.流动是由于边界平板有不对称的加热,以及作加速运动所引起.选用合理的无量纲参数,对控制方程进行简化,通过Laplace变换进行解析求解,得到闭式的速度和温度分布曲线解,随后导出表面摩擦力和传热率.发现在竖直管道中的不同剖面,流体的流动及温度分布曲线随着时间而增加,且在运动平板附近更高.特别是,流体的速度和温度随着平板间距的增加而增加,但是,表面摩擦力和热传导率随着平板间距的增加而减小.  相似文献   

5.
A technique is presented for interpolating unsteady solutions to parameterised fluid flow problems, using a combination of proper orthogonal decomposition and radial basis functions. The technique is validated by considering simulations involving three dimensional unsteady compressible inviscid flow over an oscillating ONERA M6 wing. It is demonstrated that the approach can result in a large reduction in the cpu time required to find solutions at new parameter values, without a significant loss in accuracy.  相似文献   

6.
We present a de-coupled approach for computational modeling of liquid droplets moving on rough substrate surfaces. The computational model comprises solving the membrane deformation problem and the fluid flow problem in a segregated manner. The droplet shape is first computed by solving the Young-Laplace equation where contact constraints, due to the droplet-substrate contact, are applied through the penalty method [1]. The resulting configuration constitutes the domain for the fluid flow problem, where the bulk fluid behavior is modeled by the unsteady Stokes' flow model expressed in Arbitrary Lagrangian-Eulerian (ALE) framework. The entire analysis is performed in the framework of Finite Element Method (FEM). Application of the approach to the case of a droplet moving on a rough surface is presented as an example. (© 2013 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

7.
To determine the dynamic response of a structure under the influence of the fluid flow one must solve a coupled computational fluid dynamics (CFD) and computational structural dynamics (CSD) mathematical problem. This paper presents the comparison of two methods for the calculation of the fluid-structure interaction. The first one is of explicit-implicit type and uses a staggered time advancement of the fluid and structure problems. The second uses a fully implicit discretization in the physical time of the fluid-structure equations and an explicit advancement in the dual-time. The physical fluid-structure problem is accompanied by the equations of the mesh motion, which are written as for a pseudo-structural system with its own dynamics. Representative numerical results are presented for the two degrees of freedom tipical section in unsteady transonic flow. (© 2009 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

8.
In the present work, numerical simulations of unsteady flows with moving shocks are presented. An unsteady mesh adaptation method, based on error equidistribution criteria, is adopted to capture the most important flow features. The modifications to the topology of the grid are locally interpreted in terms of continuous deformation of the finite volumes built around the nodes. The arbitrary Lagrangian–Eulerian formulation of the Euler equations is then applied to compute the flow variable over the new grid without resorting to any explicit interpolation step. The numerical results show an increase in the accuracy of the solution, together with a strong reduction of the computational costs, with respect to computations with a uniform grid using a larger number of nodes.  相似文献   

9.
Low-order methods require less computing power than classical computational fluid dynamics and can be implemented on a laptop computer, which is needed for engineering tasks. Discrete vortex methods are such low order methods that can describe the unsteady separated flow around an airfoil. After a presentation of the leading edge suction parameter discrete vortex method, a modified algorithm is proposed, in order to reduce the computing cost, and compared with the previous one. Several reference unsteady airfoil motions are discussed in terms of gain in the computation time with comparisons between the previous scheme and the present one. The accuracy of the new method is demonstrated through aerodynamic coefficients. The application of the present discrete vortex method to a transient pitching motion of an airfoil is also presented, in order to understand the leading edge vortex formation, and its implication in terms of lift and drag coefficients. The method is not limited to unsteady or transient motions but can also simulate the flow around a constant angle of attack airfoil. In that case, an original method of fast summation of the vortices located far away from the airfoil, allows a linear dependence of the computation time versus the number of vortices shed, which is a great improvement over the quadratic dependence observed in the classical discrete vortex methods. The development of the aerodynamic coefficients with angle of attack, from values ranging between −10° and 90°, is obtained for a purely two-dimensional flow. In particular, the shape of the lift coefficient of the airfoil in the fully detached flow region is established. Comparisons with relevant experimental or computational fluid dynamics data are discussed in order to grasp the influence of upstream turbulence level and three-dimensional effects in the measured data in the fully detached flow region.  相似文献   

10.
C. Vortmann  G.H. Schnerr 《PAMM》2002,1(1):373-374
Numerical simulations of cavitating flows are frequently performed by applying simple law of state‐models. In this study an advanced law of state‐model on the basis of a Landau‐type approach is used that focusses on the physical treatment of relaxation phenomena. Relaxation phenomena or phase non‐equilibrium effects occur within the scope of two‐phase fluid dynamics if the time scale of the flow problem is small. This appears e.g. in the case of cavitating flow in injector nozzles of diesel engines. The aim of this study is the determination of the relaxation parameter of the advanced law of state‐model. For this reason a theoretical approach is presented as well as simulations of unsteady cavitating nozzle flows that are compared with experimental data. Concerning the calculation of 2‐D unsteady cavitating flow the evolution equation for the vapor fraction is solved by a modified Volume‐of‐Fluid algorithm.  相似文献   

11.
Some properties of unsteady unidirectional flows of a fluid of second grade are considered for flows impulsively started from rest by the motion of a boundary or two boundaries or by sudden application of a pressure gradient. Flows considered are: unsteady flow over a plane wall, unsteady Couette flow, flow between two parallel plates suddenly set in motion with the same speed, flow due to one rigid boundary moved suddenly and one being free, unsteady Poiseuille flow and unsteady generalized Couette flow. The results obtained are compared with those of the exact solutions of the Navier–Stokes equations. It is found that the stress at time zero on the stationary boundary for the flows generated by impulsive motion of a boundary or two boundaries is finite for a fluid of second grade and infinite for a Newtonian fluid. Furthermore, it is shown that for unsteady Poiseuille flow the stress at time zero on the boundary is zero for a Newtonian fluid, but it is not zero for a fluid of second grade.  相似文献   

12.
This paper develops an efficient particle tracking algorithm to be used in fluid simulations approximated by a high-order multidomain discretization of the Navier–Stokes equations. We discuss how to locate a particle's host subdomain, how to interpolate the flow field to its location, and how to integrate its motion in time. A search algorithm for the nearest subdomain and quadrature point, tuned to a typical quadrilateral isoparametric spectral subdomain, takes advantage of the inverse of the linear blending equation. We show that to compute particle-laden flows, a sixth-order Lagrangian polynomial that uses points solely within a subdomain is sufficiently accurate to interpolate the carrier phase variables to the particle position. Time integration of particles with a lower-order Adams–Bashforth scheme, rather than the fourth-order Runge–Kutta scheme often used for the integration of the carrier phase, increases computational efficiency while maintaining engineering accuracy. We verify the tracking algorithm with numerical tests on a steady channel flow and an unsteady backward-facing step flow.  相似文献   

13.
在本文中,研究了注入轴对称模腔非牛顿流体非定常流动.本文的第二部份研究了上随体Maxwell流体管内热流动.对于注入模腔流动.其本构方程采用幂律流体模型方程.为了避免在表现粘度中温度关系引起的非线性.引进了一特征粘度的概念.描述本力学过程的基本方程是,本构方程、定常状态的运动方程、非定常能量方程及连续方程.该方程组在空间是二维问题,在数学上是三维问题.采用分裂差分格式求得本方程组的数值解答.分裂法曾成功应用于求解牛顿流体问题.在本文中,首次将分裂法成功地应用解决非牛顿流体流动问题.对于圆管内热流,给出了差分格式,使基本方程组化为一个三对角方程组.其结果,给出了不同时刻的模腔内二维温度分布.  相似文献   

14.
Studies of tidal stream turbine performance and of wake development are often conducted in tow-tanks or in regulated flumes with uniform flows across the turbine. Whilst such studies can be very useful, it is questionable as to what extent the results would differ if the flows were more complex in nature, for instance if the flows were unsteady or non-uniform or even both. This study aims to explore whether the results would be affected once we move away from the uniform flow scenario. A numerical modelling study is presented in which tidal stream turbine performance and wake development in non-uniform flow conditions are assessed. The model implements the Blade Element Momentum method for characterising turbine rotor source terms which are used within a computational fluid dynamics model for predicting the interaction between the turbines and the surrounding flow. The model is applied to a rectangular domain and a range of slopes are implemented for the water surface to instigate an increase in flow velocity along the domain. Within an accelerated flow domain wake recovery occurred more rapidly although rotor performance was not affected.  相似文献   

15.
In the present work, unsteady MHD flow of a Maxwellian fluid above an impulsively stretched sheet is studied under the assumption that boundary layer approximation is applicable. The objective is to find an analytical solution which can be used to check the performance of computational codes in cases where such an analytical solution does not exist. A convenient similarity transformation has been found to reduce the equations into a single highly nonlinear PDE. Homotopy analysis method (HAM) will be used to find an explicit analytical solution for the PDE so obtained. The effects of magnetic parameter, elasticity number, and the time elapsed are studied on the flow characteristics.  相似文献   

16.
In this study, we propose a mathematical model for U-shaped geothermal heat exchangers based on the unsteady Navier–Stokes problem. In the numerical solution of this problem, we divide the exchanger into two computational domains: rectilinear pipes where the temperature field is computed analytically, and a U-curved pipe where solutions for both the flow and heat exchange are calculated using a numerical procedure based on the Galerkin finite elements method. The results of some numerical simulations are provided and used to study the performance of geothermal exchangers by assessing the effective energy produced. We also present a validation analysis based on experimental measurements obtained from a real geothermal exchanger.  相似文献   

17.
非牛顿流体非定常旋转流动计算机智能解析理论   总被引:2,自引:0,他引:2  
韩式方 《应用数学和力学》1999,20(11):1149-1160
计算机符号运算科学是人工智能的前沿方向。计算机软件Macsyma是完成符号运算的有力工具。应用德国Darmstadt大学的计算机软件Macsyma、与数学方法和流变学模型结合,研究了Oldroyd B流体由一类定常状态向另一定常状态转变的非定常流动过程。采用改进的Kantorovich方法和符号运算软件,把该问题的3阶偏微分方程的初、边值问题化为各级近似的2阶常微分方程问题。并给出了1级、2级和3级近似方程的解析形式解答。该研究表明了计算机符号处理解决应用数学和力学问题的潜力,同时指出了由一定常状态向另一定常状态转变的非牛顿流动过程,可以经历无限多途径,这一现象是由于本构方程的非线性性质引起的。  相似文献   

18.
In this paper, we present a finite difference method for the implementation of the rotation of a circular cylinder in the incompressible flow field by solving the two-dimensional unsteady Navier-Stokes equations. The approach is to use staggered grid method so that the accuracy and order of convergence of the associated algorithms can be maintained. The proposed method is easy to be implemented and is effective. A set of simulations for the flow dynamics is provided to show the computational results.  相似文献   

19.
The paper deals with numerical investigation of the effect of plaque morphology on the flow characteristics in a diseased coronary artery using realistic plaque morphology. The morphological information of the lumen and the plaque is obtained from intravascular ultrasound imaging measurements of 42 patients performed at Cleveland Clinic Foundation, Ohio. For this data, study of Bhaganagar et al. (2010) [1] has revealed the stenosis for 42 patients can be categorized into four types – type I (peak-valley), type II (ascending), type III (descending), and type IV (diffuse). The aim of the present study is to isolate the effect of shape of the stenosis on the flow characteristics for a given degree of the stenosis. In this study, we conduct fluid dynamic simulations for the four stenosis types (type I–IV) and analyze the differences in the flow characteristics between these types. Finely refined tetrahedral mesh for the 3-D solid model of the artery with plaques has been generated. The 3-D steady flow simulations were performed using the turbulence (kε) model in a finite volume based computational fluid dynamics solver. The axial velocity, the radial velocity, turbulence kinetic energy and wall shear stress profiles of the plaque have been analyzed. From the axial and radial velocity profiles results the differences in the velocity patterns are significantly visible at proximal as well as distal to the throat, region of maximum stenosis. Turbulent kinetic energy and wall shear stress profiles have revealed significant differences in the vicinity of the plaque. Additional unsteady flow simulations have been performed to validate the hypothesis of the significance of plaque morphology in flow alterations in diseased coronary artery. The results revealed the importance of accounting for plaque morphology in addition to plaque height to accurately characterize the turbulent flow in a diseased coronary artery.  相似文献   

20.
Michael Hegetschweiler  Patrick Jenny 《PAMM》2007,7(1):4090019-4090020
Turbulent combustion is commonly categorized into premixed, non-premixed and partially premixed combustion. For nonpremixed combustion simulations the laminar flamelet concept proved to be very valuable while for the more complex case of partially premixed combustion this model shows considerable deficiencies. Here, the classical laminar flamelet approach is extended to the partially premixed combustion regime. For that, the joint statistics of mixture fraction, scalar dissipation rate and a progress variable, calculated with a joint probability density function (PDF) method, is used to get the statistics of the compositions and of the chemical energy source term from pre-processed flame tables. This approach can be compared with the unsteady flamelet concept; the main differences consists of the way the progress variable evolution is computed and in the pre-computed flame tables. The progress variable describes the point of time a fluid parcel is consumed by a flame front. The fluid parcels are represented by computational particles, which are used for PDF methods. The pre-computed flame tables are computed from steady solutions 2D stabilized flames propagating into an unburnt mixture with varying mixture fraction. The corresponding position of a fluid particle in such a 2D laminar flame is determined by its mixture fraction and a burning time; both to be modeled for each computational particle in the PDF simulation. Numerical experiments of turbulent diffusion jet flames demonstrate that this approach can be employed for challenging test cases. (© 2008 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim)  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号