首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Results of an experimental investigation of the two-phase wall shear stress averaged over the tube perimeter and the pulsation of wall shear stress in a stimulated ascendant flow with monodisperse bubbles with an average diameter of 1.2 and 2.2 mm are presented. Regimes with various hydrodynamic parameters such as high shear stress on the wall, low and negative wall shear stress, a high level of shear stress pulsation on the wall, and possible decrease in this level of pulsation are found. An increase in the void gas fraction results in a monotonic increase of perturbation of the single-phase flow. The dependences of the ratio of two-phase and single-phase wall shear stresses for two average bubble diameters seem to be qualitatively similar. The analysis of data revealed a complex dependence of the shear stress pulsation on the bubble diameter. The averaged flow characteristics quantitatively change upon the decrease in the bubble diameter. A further decrease in the average bubble diameter at the same void gas fraction will probably increase the heat-and mass-transfer characteristics of the flow. This is an issue for the futures study.  相似文献   

2.
An experimental electrodiffusional technique with eight double probes is used to detect perturbation of the wall shear stress by a single bubble in laminar upward tube flow. Small almost spherical and long Taylor bubbles are tested. The wall shear stress perturbations by bubbles have a complex structure. It is possible to define three components of perturbation caused by a small bubble. The perturbation by Taylor bubble contains only two components due to the main flow symmetry around the bubble. An unexpectedly long shear stress pulsations zone is registered behind the Taylor bubbles.  相似文献   

3.
采用VOF模型对倾角为45°、80°、85°三种情况下倾斜上升管内弹状流的壁面传质特性进行了研究.传质特性通过其与壁面切应力的类比关系来体现.数值模拟结果表明,低混合物流速时,上管壁面切应力在液膜区有明显波动,而下管壁面切应力分布则比较光滑.随着混合流速的增大,液膜区上下壁面切应力分布趋于一致.管子下壁面切应力平均值大于管子上壁面,在Taylor气泡运动速度较低时较为突出.随着Taylor气泡速度的增大,管子上下壁面的切应力平均值趋于相同.相同的混合流速下倾斜角度越大,上下管壁的切应力分布越趋于近似.下降液膜区的壁面切应力平均值大于Taylor气泡尾迹区域.根据Chilton-Colburn的类比关系,壁面切应力的规律完全适用于壁面传质系数.  相似文献   

4.
The paper presents the first experimental results concerning the wall shear stress in an upward monodispersed microbubble flow in vertical tube. A bubble generator using a microfluid focusing technique was designed to produce monodispersed submillimeter bubbles. The experimental results allow to think that there is an optimal size of the bubbles and the optimal gas fraction in the bubble sublayer that provide the maximal mass transfer coefficient beween the flow and the tube wall.  相似文献   

5.
Results of experimental investigation of the bubbly gas-liquid flow in a vertical annular channel are presented. The average and pulsation shear stresses and distributions of local void fraction were measured by the electrochemical method on both channel walls. It is shown that with a rise of gas flow rate ratio the value of wall shear stress increases significantly, and this effect becomes higher at a decrease in superficial liquid velocity. A presence of the gas phase effects significantly shear stress on the inner wall. Relative intensity of shear stress pulsations increases similarly on both channel walls.  相似文献   

6.
Results of experimental investigation of a bubbly gas-liquid flow in horizontal and weakly inclined (from −20° to +20°) flat channel are presented. These measurements were carried out within the 0.2–1 m/s range of superficial velocities and volumetric gas flow rate ratio of up to 0.2. The hydrodynamic structure was measured by the electrochemical method with application of wall shear stress and conductivity microprobes. During the experiments signals of shear stress on the upper channel wall and local gas flow rate ratio were recorded completely. After numerical treatment of recorded signals the profiles of local gas flow rate ratio were obtained, average shear stress and its relative mean square pulsations on the upper channel wall were determined. It is shown that under the studied regimes the bubbles are grouped into clusters, and the bubbly flow is presented by alternation of bubbly clusters and single-phase liquid with separate bubbles and without them. Average wall shear stress and absolute shear stress pulsations in the range of bubbly clusters and beyond them were determined. Histograms of probability density distribution were obtained for the wall shear stress on the upper wall. It is shown that average shear stress and absolute pulsations in clusters are significantly higher than those in the flow zone free from bubbles. The work was financially supported by the Russian Foundation for Basic Research (No. 07-08-00405a).  相似文献   

7.
A model of an ultrasound-driven encapsulated microbubble(EMB) oscillation near biomaterial wall is presented and used for describing the microflow-induced shear stress on the wall by means of a numerical method. The characteristic of the model lies in the explicit treatment of different types of wall for the EMB responses. The simulation results show that the radius-time change trends obtained by our model are consistent with the existing models and experimental results. In addition, the effect of the elastic wall on the acoustic EMB response is stronger than that of the rigid wall, and the shear stress on the elastic wall is larger than that of the rigid wall. The closer the EMB to the wall, the greater the shear stress on the wall. The substantial shear stress on the wall surface occurs inside a circular zone with a radius about two-thirds of the bubble radius. This paper may be of interest in the study of potential damage mechanisms to the microvessel for drug and gene delivery due to sonoporation.  相似文献   

8.
Controlled cavitation in microfluidic systems   总被引:1,自引:0,他引:1  
We report on cavitation in confined microscopic environments which are commonly called microfluidic or lab-on-a-chip systems. The cavitation bubble is created by focusing a pulsed laser into these structures filled with a light-absorbing liquid. At the center of a 20 microm thick and 1 mm wide channel, pancake-shaped bubbles expand and collapse radially. The bubble dynamics compares with a two-dimensional Rayleigh model and a planar flow field during the bubble collapse is measured. When the bubble is created close to a wall a liquid jet is focused towards the wall, resembling the jetting phenomenon in axisymmetry. The jet flow creates two counter-rotating vortices which stir the liquid at high velocities. For more complex geometries, e.g., triangle- and square-shaped structures, the number of liquid jets recorded correlates with the number of boundaries close to the bubble.  相似文献   

9.
This paper deals with wall shear stress in an upward gas-liquid slug flow inside a vertical tube. Local characteristics were measured by the electrodiffusion method. The method of conditional averaging over realization ensemble was used, and this allows distinguishing large-scale structures on the background of turbulent pulsation of liquid. While averaging, each slug velocity measured by a double probe of electric conductivity was taken into account. Averaged distributions of shear stress over the wall under a gas slug were obtained for different mode parameters. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 04-01-00328) and the Russian Science Support Foundation (Grant “The Best Post-Graduate of RAS-2006”).  相似文献   

10.
The effect of suppression of turbulence in a downward bubbly flow and its impact on the wall shear stress and heat transfer are discussed. Measurements were carried out for Reynolds numbers Re = 5000–10000, which were calculated from the velocity of the liquid phase and with the gas volumetric flow rate ratio β = 0–0.05. Data on the size of bubbles detaching from the edges of an array of capillaries in a liquid flow are given. The influence of the disperse phase dimensions on the wall shear stress and heat transfer is discussed. It is shown that change in the size of the dispersed phase can lead to both intensification and deterioration of heat transfer as compared with a single-phase flow at constant flow rates of liquid and gas at the channel inlet. The cause of the heat transfer deterioration is “laminarization” of the flow in the near-wall region. An analysis of the spectral power of signals is given.  相似文献   

11.
电场作用下的气泡受力分析   总被引:5,自引:1,他引:4  
本文在蠕动流近似的基础上分析计算了具有不同介电常数工质的气泡在外电场力作用下的受力状况。计算结果表明电场力的水平分力使气泡沿场强方向伸长,并且液体和气体相对介电常数之比越大的工质所受的电场力越大。从而,沸腾换热过程中外加电场对液体和气体相对介电常数比值较大的工质能够产生更大的影响。  相似文献   

12.
In this work, three ultrasonic radiators in different shapes have been designed in order to investigate the effects of radiator shapes on the argon bubble dispersion and diving as well as the degassing efficiency on magnesium melt. The radiator shape has a strong influence on the bubble diving and dispersion by ultrasound. A massive argon bubble slowly flows out from the radiator with the hemispherical cap, due to the covering hemispherical cap. Using a concave radiator can intensively crush the argon bubbles and drive them much deep into the water/melt, depending on the competition between the argon flow and opposite joint shear force from the concave surface. The evolution of wall bubbles involves the ultrasonic cavities carrying dissolved gas, migrating to the vessel wall, and escaping from the liquid. Hydrogen removal can be efficiently achieved using a concave radiator. The hydrogen content can be reduced from 22.3 μg/g down to 8.7 μg/g. Mechanical properties are significantly promoted, due to the structure refinement and efficient hydrogen removal.  相似文献   

13.
Results of experimental investigation of a bubbly gas-liquid flow in an inclined flat channel are presented. Themeasurements were carried out in the range of superficial liquid velocities of 0.3–1.1 m/s and with different values of the volumetric gas flow rate ratio. The hydrodynamic structure wasmeasured bymeans of an electrochemical method using miniature shear stress probes. Values of average shear stress and heat transfer coefficient for different orientation of the channel were found. It is shown that in a bubbly gas-liquid flow the shear stress and heat transfer depend substantially on the channel inclination angle.  相似文献   

14.
Mean and fluctuating wall shear stress is measured in strongly disrupted cases generated by various low-porosity wall-mounted single- and multi-scale fences. These grids generate a highly turbulent wake which interacts with the wall-bounded flow modifying the wall shear stress properties. Measurement methods are validated first against a naturally growing zero pressure gradient turbulent boundary layer showing accuracies of 1% and 4% for extrapolation and direct measurement of the mean shear stress respectively. Uncertainty associated with the root mean square level of the fluctuations is better than 2% making it possible to measure small variations originating from the different fences. Additionally, probability density functions and spectra are also measured providing further insight into the flow physics. Measurement of shear stress in the disrupted cases (grid+TBL) suggest that the flow characteristics and turbulence mechanisms remain unaltered far from the grid even in the most disrupted cases. However, a different root mean square level of the fluctuations is found for different grids. Study of the probability density functions seem to imply that there are different degrees of interaction between the inner and outer regions of the flow.  相似文献   

15.
纳米通道内气体剪切流动的分子动力学模拟   总被引:1,自引:0,他引:1       下载免费PDF全文
张冉  谢文佳  常青  李桦 《物理学报》2018,67(8):84701-084701
采用分子动力学模拟方法研究了表面力场对纳米通道内气体剪切流动的影响规律.结果显示通道内的气体流动分为两个区域:受壁面力场影响的近壁区域和不受壁面力场影响的主流区域.近壁区域内,气体流动特性和气体动力学理论预测差别很大,密度和速度急剧增大并出现峰值,正应力变化剧烈且各向异性,剪切应力在距壁面一个分子直径处出现突变.主流区域的气体流动特性与气体动力学理论预测相符合,该区域内的密度、正应力与剪切应力均为恒定值,速度分布亦符合应力-应变的线性响应关系.不同通道高度及密度下,近壁区域的归一化密度、速度及应力分布一致,表明近壁区域的气体流动特性仅由壁面力场所决定.随着壁面对气体分子势能作用的增强,气体分子在近壁区域的密度和速度随之增大,直至形成吸附层,导致速度滑移消失.通过剪切应力与切向动量适应系数(TMAC)的关系,得到不同壁面势能作用下的TMAC值,结果表明壁面对气体分子的势能作用越强,气体分子越容易在壁面发生漫反射.  相似文献   

16.
Results of experimental investigation of heat transfer and wall friction in the upward bubble flow in a flat inclined channel are presented. Measurements were carried out in the range of superficial liquid velocities of 0.3–1.1 m/s and different values of volumetric void fraction. The hydrodynamic structure was measured by means of the electrochemical method with the use of miniature friction sensors. The values of average friction and heat transfer at different channel orientation were determined. It is shown that in the bubble gas-liquid flow we can observe a significant dependence of friction and heat transfer on the angle of channel inclination.  相似文献   

17.
A single cell of the gas-liquid slug flow was studied. The flow around an immobile gas slug in a downflow of liquid and under its bottom was measured. The values of the wall shear stress and its pulsations were measured by the electrodiffusion method depending on a distance from the slug nose. It is shown that in a liquid film around a slug, turbulent pulsations are damped in comparison with a single-phase liquid flow. In the bottom part of a slug, where vortices are detached, turbulent pulsations exceed significantly the single-phase ones. The work was financially supported by the Russian Foundation for Basic Research (Grant No. 07-08-00405a).  相似文献   

18.
Surface cleaning using cavitation bubble dynamics is investigated numerically through modeling of bubble dynamics, dirt particle motion, and fluid material interaction. Three fluid dynamics models; a potential flow model, a viscous model, and a compressible model, are used to describe the flow field generated by the bubble all showing the strong effects bubble explosive growth and collapse have on a dirt particle and on a layer of material to remove. Bubble deformation and reentrant jet formation are seen to be responsible for generating concentrated pressures, shear, and lift forces on the dirt particle and high impulsive loads on a layer of material to remove. Bubble explosive growth is also an important mechanism for removal of dirt particles, since strong suction forces in addition to shear are generated around the explosively growing bubble and can exert strong forces lifting the particles from the surface to clean and sucking them toward the bubble. To model material failure and removal, a finite element structure code is used and enables simulation of full fluid–structure interaction and investigation of the effects of various parameters. High impulsive pressures are generated during bubble collapse due to the impact of the bubble reentrant jet on the material surface and the subsequent collapse of the resulting toroidal bubble. Pits and material removal develop on the material surface when the impulsive pressure is large enough to result in high equivalent stresses exceeding the material yield stress or its ultimate strain. Cleaning depends on parameters such as the relative size between the bubble at its maximum volume and the particle size, the bubble standoff distance from the particle and from the material wall, and the excitation pressure field driving the bubble dynamics. These effects are discussed in this contribution.  相似文献   

19.
Nonlinear dynamics of a gas bubble in an incompressible elastic medium   总被引:1,自引:0,他引:1  
A nonlinear model in the form of the Rayleigh-Plesset equation is developed for a gas bubble in an essentially incompressible elastic medium such as a tissue or rubberlike medium. Two constitutive laws for the elastic medium are considered: the Mooney potential, and Landau's expansion of the strain energy density. These two constitutive laws are compared at quadratic order to obtain a relation between their respective elastic constants. Attention is devoted to the relative importance of shear stress on the bubble dynamics, allowing for the equilibrium gas pressure in the bubble to differ substantially from the pressure at infinity. The model for the bubble motion is approximated to quadratic order to assess the importance of shear stress in the surrounding medium relative to that of the gas pressure in the bubble. Relations are derived for the value of the shear wave speed at which the two contributions are comparable, which provide an assessment of when shear stress in the surrounding medium must be taken into account when modeling bubble dynamics.  相似文献   

20.
A high-resolution particle image velocimetry was used to characterize a low Reynolds number turbulent flow in a channel. Experiments were conducted over a sand grain-coated surface of large relative roughness, and the results were compared with measurements over a smooth surface. The roughness perturbation significantly modified the outer layer. Even though the streamwise Reynolds stress shows less sensitivity in the outer layer to the boundary condition, significant enhancements were observed in the wall-normal Reynolds stress and the Reynolds shear stress. These modifications were considered as footprints of the larger-scale eddies transporting intense wall-normal motions away from the rough wall. A quadrant decomposition shows that strong and more frequent ejections are responsible for the larger values of the mean Reynolds shear stress over the rough wall. The results also indicate that spanwise vortex cores with mean vorticity of the same sign as the mean shear are the dominant smaller-scale vortical structures over the smooth and rough walls. A linear stochastic estimation-based analysis shows that the average larger-scale structure associated with these vortices is a shear layer that strongly connects the outer layer flow to the near-wall flow. A proper orthogonal decomposition of the flow suggests that the large-scale eddy is more energetic for the rough wall, and contributes more significantly to the resolved turbulent kinetic energy and the Reynolds shear stress than the smooth wall.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号