首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 687 毫秒
1.
The reactions of several thioketones containing a conjugated C?C bond with diazo compounds were investigated. All of the selected compounds reacted via a 1,3‐dipolar cycloaddition with the C?S group and subsequent N2 elimination to yield thiocarbonyl ylides as intermediates, which underwent a 1,3‐dipolar electrocyclization to give the corresponding thiirane 25 , or, by a subsequent desulfurization, to give the olefins 33a and 33b . None of the intermediate thiocarbonyl ylides reacted via 1,5‐dipolar electrocyclization. If the α,β‐unsaturated thiocarbonyl compound bears an amino group in the β‐position, the reactions with diazo compounds led to the 2,5‐dihydrothiophenes 40a – 40d . In these cases, the proposed mechanism of the reactions led once more to the thiocarbonyl ylides 36 and thiiranes 38 , respectively. The thiiranes reacted via an SNi′‐like mechanism to give the corresponding thiolate/ammonium zwitterion 39 , which underwent a ring closure to yield the 2,5‐dihydrothiophenes 40 . Also in these cases, no 1,5‐dipolar electrocyclization could be observed. The structures of several key products were established by X‐ray crystallography.  相似文献   

2.
A novel convenient method for the generation of thiocarbonyl ylides from readily accessible starting materials and the first synthetic application of in situ generated ylides in the synthesis of silyl enol and dienol ethers, accompanied by C-C bond formation, is described. Under completely neutral conditions without any catalyst or additive, thermal reactions of S-alpha-silylbenzyl thioesters in sealed tubes at 180 degrees C provided silyl enol and dienol ethers in good to excellent yields with high stereoselectivities. This procedure consists of a multistep reaction in a one-pot process, i.e., 1,4-silatropy of S-alpha-silylbenzyl thioesters to give thiocarbonyl ylides, 1,3-electrocyclization of the ylides to give thiiranes, and the extrusion of sulfur from thiiranes to give silyl enol and dienol ethers.  相似文献   

3.
Dihetaryl thioketones react with thiocarbonyl ylides to give 1,3‐dithiolanes in high yields. No competitive side reactions of the thiocarbonyl ylides were observed, evidencing the ‘superdipolarophilic’ character of this less‐known group of thioketones. Depending on the type of substituents present in both the thiocarbonyl ylide and the thioketone, formal [3+2] cycloadditions occur with complete regioselectivity or with formation of a mixture of both regioisomers. Regioselective formation of the sterically more crowded 1,3‐dithiolanes is explained via a mechanism involving stabilized 1,5‐biradicals. In systems with less‐efficient radical stabilization, e.g., in the case of adamantanethione S‐methanide, substantial violation of the regioselectivity was observed as a result of steric hindrance.  相似文献   

4.
The reactions of thiobenzamide 8 with diazo compounds proceeded via reactive thiocarbonyl ylides as intermediates, which underwent either a 1,5‐dipolar electrocyclization to give the corresponding five membered heterocycles, i.e., 4‐amino‐4,5‐dihydro‐1,3‐thiazole derivatives (i.e., 10a, 10b, 10c , cis‐ 10d , and trans‐ 10d ) or a 1,3‐dipolar electrocyclization to give the corresponding thiiranes as intermediates, which underwent a SNi′‐like ring opening and subsequent 5‐exo‐trig cyclization to yield the isomeric 2‐amino‐2,5‐dihydro‐1,3‐thiazole derivatives (i.e., 11a, 11b, 11c , cis‐ 11d , and trans‐ 11d ). In general, isomer 10 was formed in higher yield than isomer 11 . In the case of the reaction of 8 with diazo(phenyl)methane ( 3d ), a mixture of two pairs of diastereoisomers was formed, of which two, namely cis‐ 10d and trans‐ 10d , could be isolated as pure compounds. The isomers cis‐ 11d and trans‐ 11d remained as a mixture. In the reactions of the thioxohydrazone 9 with diazo compounds 3b and 3d , the main products were the alkenes 18 and 23 , respectively. Their formation was rationalized by a 1,3‐dipolar electrocyclization of the corresponding thiocarbonyl ylide and subsequent desulfurization of the intermediate thiiran. As minor products, 2,5‐dihydro‐1,3‐thiazol‐5‐amines 21 and 24 were obtained, which have been formed by 1,5‐dipolar electrocyclization of the thiocarbonyl ylide, followed by a 1,3‐shift of the dimethylamino group.  相似文献   

5.
In situ-generated unsubstituted, “parent” azomethine and thiocarbonyl ylides are used to prepare a large variety of 3-aryl- and alkyl-substituted, 4-pentafluorosulfanylpyrroles and 3-aryl-substituted, 4-pentafluorosulfanylthiophenes, the latter of which are to our knowledge the first reported SF5-substituted thiophenes. The 1,3-cycloadditions of these ylides with aryl and alkyl, SF5-alkynes produce dihydro-pyrroles and thiophenes, which without isolation can then be oxidatively aromatized to the respective pentafluorosulfanylpyrroles and thiophenes in good yield.  相似文献   

6.
The reactions of α-diazo ketones 1a,b with 9H-fluorene-9-thione ( 2f ) in THF at room temperature yielded the symmetrical 1,3-dithiolanes 7a,b , whereas 1b and 2,2,4,4-tetramethylcyclobutane-1,3-dithione ( 2d ) in THF at 60° led to a mixture of two stereoisomeric 1,3-oxathiole derivatives cis- and trans- 9a (Scheme 2). With 2-diazo-1,2-diphenylethanone ( 1c ), thio ketones 2a–d as well as 1,3-thiazole-5(4H)-thione 2g reacted to give 1,3-oxathiole derivatives exclusively (Schemes 3 and 4). As the reactions with 1c were more sluggish than those with 1a,b , they were catalyzed either by the addition of LiClO4 or by Rh2(OAc)4. In the case of 2d in THF/LiClO4 at room temperature, a mixture of the monoadduct 4d and the stereoisomeric bis-adducts cis- and trans- 9b was formed. Monoadduct 4d could be transformed to cis- and trans- 9b by treatment with 1c in the presence of Rh2(OAc)4 (Scheme 4). Xanthione ( 2e ) and 1c in THF at room temperature reacted only when catalyzed with Rh2(OAc)4, and, in contrast to the previous reactions, the benzoyl-substituted thiirane derivative 5a was the sole product (Scheme 4). Both types of reaction were observed with α-diazo amides 1d,e (Schemes 5–7). It is worth mentioning that formation of 1,3-oxathiole or thiirane is not only dependent on the type of the carbonyl compound 2 but also on the α-diazo amide. In the case of 1d and thioxocyclobutanone 2c in THF at room temperature, the primary cycloadduct 12 was the main product. Heating the mixture to 60°, 1,3-oxathiole 10d as well as the spirocyclic thiirane-carboxamide 11b were formed. Thiirane-carboxamides 11d–g were desulfurized with (Me2N)3P in THF at 60°, yielding the corresponding acrylamide derivatives (Scheme 7). All reactions are rationalized by a mechanism via initial formation of acyl-substituted thiocarbonyl ylides which undergo either a 1,5-dipolar electrocyclization to give 1,3-oxathiole derivatives or a 1,3-dipolar electrocyclization to yield thiiranes. Only in the case of the most reactive 9H-fluorene-9-thione ( 2f ) is the thiocarbonyl ylide trapped by a second molecule of 2f to give 1,3-dithiolane derivatives by a 1,3-dipolar cycloaddition.  相似文献   

7.
The unexpected 1,3‐benzodithiine derivatives 5b,c were obtained from the reactions of trimethylsilyldiazomethane 2 with C‐sulfonyldithioformates, bearing pentachlorophenylthio group, 1b,c via unprecedented cyclization of the transient thiocarbonyl ylides 4b,c . While the corresponding reaction with C‐sulfonyldithioformates, bearing phenylthio group, afforded 5a via [2 + 3]‐cycloadditive dimerization of a transient thiocarbonyl ylides 4a . Under the same reaction condition, C‐sulfonyldithioformates 1d–f react with diazomethane and/or phenyldiazomethane to afford the unsymmetrical 1,3‐dithiolane 7d,e and thiirane 8e,f derivatives, respectively. © 2007 Wiley Periodicals, Inc. Heteroatom Chem 18:28–33, 2007; Published online in Wiley InterScience ( www.interscience.wiley.com ). DOI 10.1002/hc.20246  相似文献   

8.
Synthesis of Trifluoromethyl-Substituted Sulfur Heterocycles Using 3,3,3-Trifluoropyruvic-Acid Derivatives The reaction of methyl 3,3,3-trifluoropyruvate ( 1 ) with 2,5-dihydro-1,3,4-thiadiazoles 4a, b in benzene at 45° yielded the corresponding methyl 5-(trifluoromethyl)-1,3-oxathiolane-5-carboxylates 5a, b (Scheme 1) via a regioselective 1,3-dipolar cycloaddition of an intermediate ‘thiocarbonyl ylide’ of type 3 . With methyl pyruvate, 4a reacted similarly to give 6 in good yield. Methyl 2-diazo-3,3,3-trifluoropropanoate ( 2 ) and thiobenzophenone ( 7a ) in toluene underwent a reaction at 50°; the only product detected in the reaction mixture was thiirane 8a (Scheme 2). With the less reactive thiocarbonyl compounds 9H-xanthene-9-thione ( 7b ) and 9H-thioxanthene-9-thione ( 7c ) as well as with 1,3-thiazole-5(4H)-thione 12 , diazo compound 2 reacted only in the presence of catalytic amounts of Rh2(OAc)4. In the cases of 7a and 7b , thiiranes 8b and 8c , respectively, were the sole products (Scheme 3). The crystal struture of 8c has been established by X-ray crystallography (Fig.). In the reaction with 12 , desulfurization of the primarily formed thiirane 14 gave the methyl 3,3,3-trifluoro-2-(4,5-dihydro-1,3-thiazol-5-ylidene)propanoates (E)-and (Z)- 15 (Scheme 4). A mechanism of the Rh-catalyzed reaction via a carbene addition to the thiocarbonyl S-atom is proposed in Scheme 5.  相似文献   

9.
Reaction of Di(tert-butyl)- and Diphenyldiazomethane and 1,3-Thiazole-5(4H)-thiones: Isolation and Crystal Structure of the Primary Cycloadduct Reactions of diazo compounds with C?S bonds proceed via the formation of thiocarbonyl ylides, which, under the reaction conditions, undergo either 1,3-dipolar cycloadditions or electrocyclic ring closer to thiiranes (Scheme 1). With the sterically hindered di(tert-butyl)diazomethane ( 2c ), 1,3-thiazole-5(4H)-thiones 1 react to give spirocyclic 2,5-dihydro-1,3,4-thiadiazoles 3 (Scheme 2). These adducts are stable in solution at ?20°, and they could be isolated in crystalline form. The structure of 3c was established by X-ray crystallography. In CDCl3 solution at room temperature, a cycloreversion occurs, and the adducts of type 3 are in an equilibrium with 1 and 2c . In contrast, the reaction of 1 with diphenyldiazomethane ( 2d ) gave spirocyclic thiiranes 4 as the only product in high yield (Scheme 3). The crystal structure of 4b was also determined by X-ray analysis. The desulfurization of compounds 4 to 4,5-dihydro-5-(diphenylmethylidene)-1,3-thiazoles 5 was achieved by treating 4 with triphenylphosphine in boiling THF. The crystal structure of 5f is shown.  相似文献   

10.
Regioselective 1,3-Dipolar Cycloadditions of Thiocarbonyl Ylides with 1,3-Thiazole-5(4H)-thiones The thiocarbonyl ylides 13 and 1,3-thiazol-5(4H)-thiones 1 undergo a smooth reaction to yield spirocyclic 1,3-dithiolanes 14 – 16 (Schemes 4–6). The 1,3-dipolar cycloadditions occur in a regioselective manner, but the orientation of the thiobcnzophenone-S-methylide ( 13b ) differs from that of the cycloalkane thione-S-methylides 13a and 13c . Whereas the 1,3-cycloadduct with 13b is formed in accordance with frontier-orbital considerations, the inverse orientation in the reactions with 13a and 13c most likely is the result of steric hindrance in the transition state. The thiocarbonyl ylides have been prepared in situ from the corresponding 2,5-dihydro-1,3,4-thiadiazoles 12 . The more stable aliphatic precursors 12a and 12c undergo decomposition at 50°, the unstable 12b at ?30°.  相似文献   

11.
The regiochemistry of 1,3-dithiolanes obtained from thiocarbonyl ylides 9 and thiones 10 shows a striking dependence on substituents. Previously and newly performed experiments indicate that sterically hindered cycloalkanethione S-methylides and dialkylthioketone S-methylides react with alicyclic and aliphatic thiones to give the 2,2,4,4-tetrasubstituted 1,3-dithiolanes 11 exclusively. Aryl groups in one or both reactants lead to a preference for, or even complete formation of, 4,4,5,5-tetrasubstituted 1,3-dithiolanes 12. Several mechanisms appear to be involved, but the paucity of experimental criteria is troubling. Quantum-chemical calculations (see preceding paper) on the cycloaddition between thioacetone S-methylide and thioacetone furnish lower activation energies for the concerted process than for the two-step pathways via C,S- or C,C-biradicals; the favoring of the 2,4-substituted 1,3-dithiolanes over the 4,5-substituted type would be expected to increase with growing bulk of substituents. Aryl groups stabilize intermediate biradicals. Experimental criteria for the differentiation of regioisomeric dithiolanes are discussed. Thiocarbonyl ylides 9 are prepared by 1,3-cycloadditions between diazomethane and thioketones and subsequent N(2) elimination from the usually isolable 2,5-dihydro-1,3,4-thiadiazoles 17; different ratios of the two rate constants lead to divergent product formation scenarios.  相似文献   

12.
1-Aryl-6,7-dimethoxy-1,2,3,4-tetrahydroisoquinolines were prepared according to a one-pot procedure involving the reaction of 2-(3,4-dimethoxyphenyl)-ethylamine with aromatic aldehydes in TFA at reflux. The tetrahydroisoquinolines were treated with H2O2-WO42− in methanol at room temperature to give the corresponding 3,4-dihydroisoquinoline-2-oxides. Treatment of these cyclic nitrones with DMAD in toluene at room temperature gave the corresponding isoxazolo[3,2-a]isoquinolines. These compounds were heated in toluene at reflux to give the corresponding ylides in high yields (Method A). The effect of the substituents on the rate of the rearrangement of such compounds prompted us to discuss a new mechanism involving consecutive C-C bond heterolysis and 1,3-sigmatropic shift. A one-pot reaction involving the treatment of the nitrones with equimolar amounts of DMAD in refluxing toluene also gave the ylides (Method B). The structures of the prepared compounds were elucidated by spectral means and elemental analyses.  相似文献   

13.
Azomethine ylides (methyl 3-oxido-2-[3,4-dihydroisoquinolinio]-acrylate, 3-methyl-2,4-diphenyloxazolium-5-olate), thiocarbonyl ylides (thiofluorenone S-methylide, thiobenzophenone S-methylide) as well as diazomethane undergo 1,3-dipolar cycloadditions to the NN-bond of 4-nitrobenzenediazonium salt.  相似文献   

14.
Diphenyl phosphorazidate (DPPA) was used as the azide source in a one-pot synthesis of 2,2-disubstituted 3-amino-2H-azirines 1 (Scheme 1). The reaction with lithium enolates of amides of type 2 , bearing two substituents at C(2), proceeded smoothly in THF at 0°; keteniminium azides C and azidoenamines D are likely intermediates. Under analogous reaction conditions, DPPA and amides of type 3 with only one substituent at C(2) gave 2-diazoamides 5 in fair-to-good yield (Scheme 2). The corresponding 2-diazo derivatives 6–8 were formed in low yield by treatment of the lithium enolates of N,N-dimethyl-2-phenylacetamide, methyl 2-phenylacetate, and benzyl phenyl ketone, respectively, with DPPA. Thermolysis of 2-diazo-N-methyl-N-phenylcarboxamides 5a and 5b yielded 3-substituted 1,3-dihydro-N-methyl-2H-indol-2-ones 9a and 9b , respectively (Scheme 3). The diazo compounds 5–8 reacted with 1,3-thiazole-5 (4H)-thiones 10 and thiobenzophenone ( 13 ) to give 6-oxa-1,9-dithia-3-azaspiro[4.4]nona-2,7-dienes 11 (Scheme 4) and thiirane-2-carboxylic acid derivatives 14 (Scheme 5), respectively. In analogy to previously described reactions, a mechanism via 1,3-dipolar cycloaddition, leading to 2,5-dihydro-1,3,4-thiadiazoles, and elimination of N2 to give the ‘thiocarbonyl ylides’ of type H or K is proposed. These dipolar intermediates with a conjugated C?O group then undergo either a 1,5-dipolar electrocyclization to give spirohetrocycles 11 or a 1,3-dipolar electrocyclization to thiiranes 14 .  相似文献   

15.
The reaction of 2‐benzylidene‐1,3‐diphenylpropanetrione ( 1a ) with phosphorus ylides 2a–c afforded the new phosphonium ylides 4a–c . Trialkyl phosphites 3a–c react with 1a to give the respective dialkyl phosphonate products 5a–c . On the other hand, the olefinic compounds 6 and 7 were isolated from the reaction of 1b with Wittig reagents 2 . Moreover, trialkyl phosphites reacted with 1b to give products 8a–c . Possible reaction mechanisms are considered, and the structural assignments are based on analytical and spectroscopic evidence. © 2000 John Wiley & Sons, Inc. Heteroatom Chem 11:57–64, 2000  相似文献   

16.
The reactions of aryl (selenophen‐2‐yl) thioketones with CH2N2 occur with spontaneous elimination of N2, even at low temperature (?65°), to give regioselectively sterically crowded 4,4,5,5‐tetrasubstituted 1,3‐dithiolanes and/or a novel type of twelve‐membered dithia‐diselena heterocycles as dimers of the transient thiocarbonyl S‐methanides. The ratio of these products depends on the type of substituent located at C(4) of the phenyl ring. Whereas the formation of the 1,3‐dithiolanes corresponds to a [3+2] cycloaddition of an intermediate thiocarbonyl ylide with the starting thioketone, the twelve‐memberd ring has to be formed via dimerization of the ‘thiocarbonyl ylide’ with an extended biradical structure.  相似文献   

17.
A novel Fe(II)/diaryl prolinol catalyzed asymmetric 1,3-dipolar cycloaddition of azomethine ylides with alkenes has been developed. In the presence of FeCl2 (10 mol %) and α,α-bis(3,5-bistrifluoromethylphenyl)prolinol L1 (10 mol %), [3+2] cycloaddition of azomethine ylides with electronic-deficient olefins underwent smoothly in CH3CN at room temperature to generate the desired endo-adducts in moderate to good yields and enantioselectivities. This is the first example of Fe(II)/N,O-ligand (L1) catalyzed 1,3-dipolar enantioselective cycloaddition reaction of azomethine ylides.  相似文献   

18.
Reaction of Ethyl Diazoacetate with 1,3-Thiazole-5(4H)-thiones Reaction of ethyl diazoacetate ( 2a ) and 1,3-thiazole-5(4H)-thiones 1a,b in Et2O at room temperature leads to a complex mixture of the products 5–9 (Scheme 2). Without solvent, 1a and 2a react to give 10a in addition to 5a–9a . In Et2O in the presence of aniline, reaction of 1a,b with 2a affords the ethyl 1,3,4-thiadiazole-2-carboxylate 10a and 10b , respectively, as major products. The structures of the unexpected products 6a, 7a , and 10a have been established by X-ray crystallography. Ethyl 4H-1,3-thiazine-carboxylate 8b was transformed into ethyl 7H-thieno[2,3-e][1,3]thiazine-carboxylate 11 (Scheme 3) by treatment with aqueous NaOH or during chromatography. The structure of the latter has also been established by X-ray crystallography. In the presence of thiols and alcohols, the reaction of 1a and 2a yields mainly adducts of type 12 (Scheme 4), compounds 5a,7a , and 9a being by-products (Table 1). Reaction mechanisms for the formation of the isolated products are delineated in Schemes 4–7: the primary cycloadduct 3 of the diazo compound and the C?S bond of 1 undergoes a base-catalyzed ring opening of the 1,3-thiazole-ring to give 10 . In the absence of a base, elimination of N2 yields the thiocarbonyl ylide A ′, which is trapped by nucleophiles to give 12 . Trapping of A ′, by H2O yields 1,3-thiazole-5(4H)-one 9 and ethyl mercaptoacetate, which is also a trapping agent for A ′, yielding the diester 7 . The formation of products 6 and 8 can be explained again via trapping of thiocarbonyl ylide A ′, either by thiirane C (Scheme 6) or by 2a (Scheme 7). The latter adduct F yields 8 via a Demjanoff-Tiffeneau-type ring expansion of a 1,3-thiazole to give the 1,3-thiazine.  相似文献   

19.
Dimethyl diazomalonate ( 4 ) and thiobenzophenone ( 2a ) do not react in toluene even after warming to 50°. After addition of catalytic amounts of Rh2(OAc)4, a smooth reaction under N2 evolution afforded a mixture of thiiranedicarboxylate 5 and (diphenylmethylidene)malonate 6 (Scheme 2). A reaction mechanism via an intermediate ‘thiocarbonyl ylide’ 7 , formed by the addition of the carbenoid species 8 to the S-atom of 2a , is plausible. Similar reactions were carried out with 9H-xanthene-9-thione ( 2b ), 9H-thioxanthene-9-thione ( 2c , Scheme 4), and 1,3-thiazole-5(4H)-thione 18 (Scheme 6). In the cases of 2b and 2c , spirocyclic 1,3-dithiolanetetracarboxylates 14a and 14b , respectively, were obtained as the third product. Reaction mechanisms for their formation are proposed in Scheme 5: S-transfer from intermediate thiirane 12 to the carbenoid species yielded thioxomalonate 15 which underwent a 1,3-dipolar cycloaddition with ‘thiocarbonyl ylide’ 16 . An alternative is the formation of ‘thiocarbonyl ylide’ 17 via carbene addition to 15 , followed by 1,3-dipolar cycloaddition with 2b and 2c , respectively.  相似文献   

20.
The reaction of Schiff bases with fluorocarbene, generated by reduction of dibromofluoromethane with active lead in the presence of Bu4NBr under ultrasound irradiation, involves the formation of fluoro-substituted azomethine ylides which undergo cyclization into aziridines. 1,3-Cyclization of ylides, generated from N-arylimines of benzaldehyde, proceeds stereoselectively. When carrying out the reaction of Schiff bases with fluorocarbene in the presence of dimethyl maleate or dimethyl acetylenedicarboxylate, the products of dehydrofluorination of the primary adducts of the 1,3-dipolar cycloaddition of fluoro-substituted azomethine ylides to multiple bonds of dipolarophiles were obtained. In the case of the reaction of N-alkylimines of benzaldehyde the cycloaddition of ylides to dimethyl maleate completely suppressed the cyclization to aziridines.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号