首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The crystallographic structure of DyNiO3 has been investigated at T=200, 100, and 2 K from high-resolution neutron powder diffraction (NPD) data. We show that the structure is monoclinic, space group P21/n, from the metal-insulator transition temperature at TMI=564 K down to 2 K. The Ni atoms occupy two different sites 2d (Ni1) and 2c (Ni2), whose valences, estimated from bond-valence consideration, are +2.43(1) and +3.44(1) at 2 K, respectively. This is interpreted as the result of a partial charge disproportionation of the type 2Ni3+→Ni1(3−δ)++Ni2(3+δ)+, with δ≈0.55 at T=2 K. The magnetic structure has been studied from a NPD pattern at T=2 K, well below the establishment of the antiferromagnetic (AFM) ordering at TN=154 K, as well as from sequential data collected from 16 K down to 2 K. The magnetic order is defined by the propagation vector k=(1/2,0,1/2). Two possible magnetic structures are compatible with the magnetic intensities. In the second solution both Ni sublattices participate in the magnetic order, as well as Dy since it corresponds to a total disproportionation of Ni3+ to Ni2+ and Ni4+. In the second solution both Ni sublattices participate in the magnetic order, as well as Dy. The magnetic moments for Ni1 and Ni2 atoms at T=2 K are 1.8 (2) and 0.8 (2) μB, respectively. These values are also compatible with a partial charge disproportionation. Dy3+ ions exhibit long-range magnetic ordering below 8 K. An abrupt contraction of the unit-cell volume is observed at this temperature, due to a magnetoelastic coupling. The magnetic moment for Dy3+ at T=2 K is 7.87 (6) μB.  相似文献   

2.
An artificial neural network (ANN) procedure was used in the development of a catalytic spectrophotometric method for the determination of Cu(II) and Ni(II) employing a stopped-flow injection system. The method is based on the catalytic action of these ions on the reduction of resazurin by sulfide. ANNs trained by back-propagation of errors allowed us to model the systems in a concentration range of 0.5-6 and 1-15 mg l−1 for Cu(II) and Ni(II), respectively, with a low relative error of prediction (REP) for each cation: REPCu(II) = 0.85% and REPNi(II) = 0.79%. The standard deviations of the repeatability (sr) and of the within-laboratory reproducibility (sw) were measured using standard solutions of Cu(II) and Ni(II) equal to 2.75 and 3.5 mg l−1, respectively: sr[Cu(II)] = 0.039 mg l−1, sr[Ni(II)] = 0.044 mg l−1, sw[Ni(II)] = 0.045 mg l−1 and sw[Ni(II)] = 0.050 mg l−1. The ANNs-kinetic method has been applied to the determination of Cu(II) and Ni(II) in electroplating solutions and provided satisfactory results as compared with flame atomic absorption spectrophotometry method. The effect of resazurin, NaOH and Na2S concentrations and the reaction temperature on the analytical sensitivity is discussed.  相似文献   

3.
A series of novel octahedral nickel(II) dithiocarbamate complexes involving bidentate nitrogen-donor ligands (phen = 1,10-phenanthroline, bpy = 2,2′-bipyridine) or a tetradentate ligand (cyclam = 1,4,8,11-tetraazacycloteradecane) of the composition [Ni(BzMetdtc)(phen)2]ClO4 (1), [Ni(Pe2dtc)(phen)2]ClO4 (2), [Ni(Bzppzdtc)(phen)2]ClO4 · CHCl3 (3), [Ni(Bzppzdtc)(phen)2](SCN) (4), [Ni(BzMetdtc)(bpy)2]ClO4 · 2H2O (5), [Ni(Pe2dtc)(cyclam)]ClO4 (6), [Ni(BzMetdtc)2(cyclam)] (7), [Ni(Bz2dtc)2(cyclam)] (8) and [Ni(Bz2dtc)2(phen)] (9) (BzMetdtc = N,N-benzyl-methyldithiocarbamate(1-) anion, Pe2dtc = N,N-dipentyldithiocarbamate(1-) anion, Bz2dtc = N,N-dibenzyldithiocarbamate(1-) anion, Bzppzdtc = 4-benzylpiperazinedithiocarbamate(1-) anion), have been synthesized. Spectroscopic (electronic and infrared), magnetic moment and molar conductivity data, and thermal behaviour of the complexes are discussed. Single crystal X-ray analysis of 3 and 8 confirmed a distorted octahedral arrangement in the vicinity of the nickel atom with a N4S2 donor set. They represent the first X-ray structures of such type complexes. The catalytic influence of complexes 2, 3, 6, and 7 on graphite oxidation was studied and discussed.  相似文献   

4.
In an attempt to prepare binary and ternary compounds, we have obtained two molecular complexes [Ni(MEBIDA or MOBIDA)(H2O)3nH2O (n = 0 or 1) and two iso-type salts [Ni(Him)6][Ni(MEBIDA or MOBIDA)2]·4H2O [MEBIDA = N-(p-methylbenzyl)iminodiacetate(2−) and MOBIDA = N-(p-methoxybenzyl)iminodiacetate(2−) ligands, Him = imidazole]. Our results are discussed with regard to related copper(II) and nickel(II) compounds. The reasons for which these chelating ligands produce nickel(II) salts instead of ternary compounds remain unclear since other iminodiacetate-like ligands give true ternary Ni(II) compounds with imidazole and other N-heterocyclic ligands.  相似文献   

5.
Four new mixed ligand nickel(II) complexes viz., [Ni(tren)(phen)](ClO4)2 (1), [Ni(tren)(bipy)](ClO4)2 (2), [Ni(SAA)(PMDT)] · 2H2O (3) and [Ni(SAA)(TPTZ)] (4) (tren = tris(2-aminoethylamine), phen = 1,10-phenanthroline, bipy = 2,2′-bipyridine, SAA = salicylidene anthranilic acid, PMDT = N,N,N′,N″,N″-pentamethyldiethylenetriamine, TPTZ = 2,4,6-tri(2-pyridyl)-1,3,5-triazine) have been synthesized and characterized by means of elemental analysis, spectroscopic, magnetic susceptibility and cyclic voltammetric measurements. Single crystal X-ray analysis of [Ni(tren)(phen)](ClO4)2 (1) and [Ni(SAA)(PMDT)] · 2H2O (3) has revealed the presence of a distorted octahedral geometry. Superoxide dismutase activity of these complexes has also been measured.  相似文献   

6.
Well-crystallized cobalt and nickel hydrogencyanamide, Co(HNCN)2 and Ni(HNCN)2, were synthesized from the corresponding ammonia complexes [M(NH3)6]2+ under aqueous cyanamide conditions. The X-ray and neutron powder data evidence the orthorhombic system and space group Pnnm. The cell parameters for Co(HNCN)2 are a=6.572(1), b=8.805(2), c=3.267(1) Å, and Z=2; for the isotypic Ni(HNCN)2, the cell parameters arrive at a=6.457(1), b=8.768(2), c=3.230(1) Å. The octahedral coordinations of the metal ions are marginally squeezed, with interatomic distances of 4×Co-N=2.134(5) Å, 2×Co-N=2.122(9) Å, and 4×Ni-N=2.133(6) Å, 2×Ni-N=2.035(11) Å. The HNCN units appear as slightly bent (177.5(2)° for Co(HNCN)2 and 175.7(2)° for Ni(HNCN)2) and exhibit cyanamide shape character due to triple- and single-bond C-N distances (1.20(2) vs. 1.33(2) Å for Co(HNCN)2 and 1.15(2) vs. 1.38(2) Å for Ni(HNCN)2). The infrared vibration data compare well with those of the three existing alkali-metal hydrogencyanamides.  相似文献   

7.
The reactions of a series of 5-alkyl-2-thiophenedithiocarboxylates with nickel(II) chloride afforded two types of complexes, blue nickel(II) complexes with two terminal dithiocarboxylate ligands, [Ni(S2CTR)2] and violet nickel(II) complexes with perthio- and dithiocarboxylate ligands, [Ni(S2CTR)(S3CTR)] (where T = 2,5-disubstituted thiophene, R = CnH2n+1, n = 4, 6, 8, 12, 16). The blue monomers are preferred for the shorter chains (C4 and C6) and the violet compounds form exclusively for the longer chains (C8, C12, and C16) in the alkylthiophene complexes. In addition to the above series, [Ni(S2CTCH3)2], was prepared in a one-pot reaction in THF and both the blue and violet products were isolated. It was possible to convert the blue complexes [Ni(S2CTR)2] (R = butyl, hexyl) into the corresponding violet complexes [Ni(S2CTR)(S3CTR)] after stirring in THF solutions for prolonged periods of time. Liquid-crystalline properties of these complexes were examined by DSC and POM. The violet complexes with C8 and C12 alkyl chains showed liquid-crystalline properties.  相似文献   

8.
Reduction by NaBH4 of the imine functions of (5,7,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradec-4-ene)-nickel(II) and -copper(II), and of their 13-ethyl-5,7,7-trimethyl-homologues, yield the nitro-substituted cyclic tetraamine cations (5,5,7,13-tetramethyl-13-nitro-1,4,8,11-tetraazacyclotetradecane)-nickel(II) and -copper(II), [M(neh)]2+, and (13-ethyl-5,5,7-trimethyl-homologues, [M(nph)]2+, respectively. The nickel(II) cations form square–planar, singlet ground, state salts with poorly coordinating anions and octahedral, triplet ground state, compounds with additional ligands, trans-β-[Ni(neh)A2], A = Cl, NCS and trans-β-[Ni(neh)A2](ClO4)2, X = NH3, MeCN, all with nitrogen configuration III, 1R,4R,8S,11S = β. With oxalate the chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) is formed. Folded macrocycle compounds cis-α-[Ni(neh)(C5H7O2)]ClO4 and cis-α-[{Ni(neh)}2(C2O4)](ClO4)2 are formed with the chelates acetylacetonate and oxalate, with configuration 1R,4R,8R,11R = α. These react with HClO4 to form metastable α-[Ni(neh)](ClO4)2 with retention of configuration. The copper(II) cations form crimson salts with poorly coordinating anions and compounds of the type β-[Cu(neh)A]ClO4 of varying shades of blue with coordinating anions. Structures of singlet ground state square–planar nickel(II) compounds β-[Ni(neh)](ClO4)2 · H2O, β-[Ni(neh)](ClO4)2, β-[Ni(neh)]2[ZnCl3(OH2)]2[ZnCl4] · H2O and α-[Ni(neh)](ClO4)2, the triplet ground state chain-polymeric compound catena-trans-β-[Ni(neh)(μ-C2O4)]n · 3n(H2O) and of square–pyramidal β-[Cu(nph)Cl]ClO4 are reported.  相似文献   

9.
Reactions of [Ni(L)]Cl2 · 2H2O (L = 3,14-dimethyl-2,6,13,17-tetraazatricyclo[14,4,01.18,07.12]docosane) with isophthalic acid (H2isoph) and 1,3,5-cyclohexanetricarboxylic acid (H3chtc) yield the 1D nickel(II) complexes {[Ni(L)(isoph)] · 3H2O}n (1) and {[Ni(L)(H-chtc)] · H2O}n (2). The structures were characterized by X-ray crystallography, spectroscopic and magnetic susceptibility. The crystal structures of the 1D chain compounds 1 and 2 show an elongated distorted octahedron about each nickel(II) ion. The magnetic behavior of two compounds exhibits weak intrachain antiferromagnetic interaction with J values of −0.93 cm−1 for 1 and −1.28 cm−1 for 2. The electronic spectra of the complexes are significantly affected by the nature of the carboxylate ligands.  相似文献   

10.
This work describes the synthesis and X-ray crystallographic characterization of three nickel(II) complexes [Ni(3,2,3-tet){Ag(CN)2}2] (1), [Ni(3,2,3-tet)(μ-tp)]n · 1.5nH2O (2) and {[Ni(3,2,3-tet)(μ1,5-dca)](ClO4)}n (3) where 3,2,3-tet = N,N′-bis(3-aminopropyl)-1,2-ethylenediamine, tp = terephthalate and dca = dicyanamide. Compound 1 is a heterotrinuclear discrete distorted octahedral molecule whereas compound 2 forms a 1D polymeric network and an extended 2D network is formed by intermolecular hydrogen bonding. Interestingly, two adjacent 1D chains execute a novel double-helical network constructed by Ni(II) and the bridging dca ligand in compound 3. The variable temperature magnetic susceptibility measurements for compounds 2 and 3 were also carried out.  相似文献   

11.
Three new binuclear Ni(II) complexes [{Ni(L22py)Cl}2](ClO4)2 (1), [{Ni(L23py)Cl}2](ClO4)2 (2), and [{Ni(L33py)Cl}2](ClO4)2 (3), {L22py = N-(2-pyridylmethyl)-N-(2-aminoethyl)-1,2-diaminoethane, L23py = N-(2-pyridylmethyl)-N-(2-aminoethyl)-1,3-diaminopropane, L33py = N-(2-pyridylmethyl)-N-(3-aminopropyl)-1,3-diaminopropane} have been synthesized. Single crystal X-ray structure analysis showed that in each complex two distorted octahedral Ni(II) ions are bridged asymmetrically by a pair of chloride anions. Variable temperature magnetic susceptibility measurements of 1 and 3 revealed dominant ferromagnetic exchange interactions.  相似文献   

12.
Single-component molecular conductors [M(tmdt)2] (tmdt = trimethylenetetrathiafulvalenedithiolate; M = Ni, Au, Pt, Cu), exhibit a variety of electromagnetic properties, which originate from the differences of the metal’s d-orbitals role in the band structure formation. The [Au(tmdt)2] crystal undergoes an antiferromagnetic transition at 110 K, while maintaining a metallic state at lower temperatures. The Au analog has a high magnetic transition temperature as compared to traditional magnetic molecular conductors due to the strong three-dimensional (3-D) structure and the contribution of the metal d-orbitals. The single-component molecular conductor, [Cu(tmdt)2], with π- and d-like frontier orbitals is isostructural with other metallic [M(tmdt)2] systems (M = Ni, Pt, Au). The Cu(tmdt)2 molecule is planar, which strikingly contrasts the tetrahedral coordination of Cu(dmdt)2 (dmdt = dimethyltetrathiafulvalenedithiolate) with similarly extended TTF type ligands. Interestingly, unlike other [M(tmdt)2] with metallic behavior, [Cu(tmdt)2] shows semiconducting behavior at room temperature (σ(RT) = ∼7 S cm−1). The RT conductivity increased linearly with increased pressure to 110 S cm−1 at 15 kbar despite the compressed pellet sample. The magnetic susceptibility indicates one-dimensional (1-D) Heisenberg behavior with J = 117 cm−1 and shows antiferromagnetic ordering at 13 K. The [Cu(tmdt)2] is a new multi-frontier π-d system, which introduces a d(σ)-type frontier orbital around the Fermi level of the π-like metal bands.  相似文献   

13.
The reaction of [M(H2L)2] [M = Ni(II) Cu(II)] (K+H2L = N-(pyridine-4-carbonyl)-hydrazine carbodithioate) with excess of ethylenediamine (en) gave mixed ligand complexes [Ni(en)2(4-pytone)2] (4-pytone = 5-(4-pyridyl)-1,3,4-oxadiazole-2-thione), and [Cu(en)2](4-pytol)2·H2O (4-pytol = 5-(4-pyridyl)-1,3,4-oxadiazole-2-thiol). The metal complexes have been characterized with the aid of elemental analyses, IR, magnetic susceptibility and single crystal X-ray studies. Complexes (1) and (2) crystallize in monoclinic system, space group P1 21/n1 and C2/c, respectively. The ligand after cyclization is present in the deprotonated thiol form in the Cu(II) complex where it is ionically bonded through sulfur. In the Ni(II) complex (1) bonding of the ligand take place through oxadiazole nitrogen and the ligand exists as the thione form.  相似文献   

14.
The reaction of Ni(OAc)2, NiX2 (X = Cl, Br) or CoCl2 with the proligand 2-amino-2-methyl-1,3-propanediol (ampdH2) affords a new family of tetranuclear complexes. The syntheses of [Ni4(OAc)4(ampdH)4] (1) and [M4X4(ampdH)4] (M = Ni, X = Cl, 2; M = Ni, X = Br, 3; M = Co, X = Cl, 4) are reported, together with the single crystal X-ray structures of 1, 2 and 4 and the magnetochemical characterization of 1, 3 and 4. Each member of this family of complexes displays a low symmetry structure that incorporates a {M4O4} core unit based on a distorted cubane. Magnetic measurements reveal ferromagnetic exchange interactions for 1, 3 and 4. These give rise to S = 4 ground state spins for the tetranuclear Ni complexes and an anisotropic effective S′ = 2 ground state for the Co complex.  相似文献   

15.
Four new nickel(II) complexes, [{Ni(L)}2], [NiL · HPyr], [NiL · HIm] and [Ni(HL)2] · H2O, derived from diacetylmonoxime-S-benzyldithiocarbazonate (H2L) have been synthesized and characterized by elemental analyses, field desorption and electrospray ionization mass spectra, UV–Vis, infrared absorption spectra, as well as 1H NMR spectra. X-ray molecular structures showed that the Ni(II) in both [NiL · HPyr] and [NiL · HIm] are in a distorted square planar environment and is coordinated to the dianionic NNS tridentate hydrazoneoxime ligand via deprotonated oximate nitrogen, hydrazone imine nitrogen, and thiolate sulphur. The fourth coordination sites are occupied, respectively, by the pyrazole and imidazole nitrogens. The oximate O1 of [NiL · HPyr] is involved in intramolecular hydrogen bond with the pyrazole NH proton as well as intermolecular hydrogen bond pyrazole C6H proton, forming a helical chain propagating along the b-axis. The structure is stabilized by a set of π?π and CH?π interactions. The molecular units in [NiL · HIm] are linked together by hydrogen bond formation between the oximate oxygen and imidazole NH proton, giving rise to an infinite zigzag chain extended along the a-axis. The chains are interconnected by π?π and CH?O interactions. In [Ni(HL)2] · H2O, the Ni(II) is in a distorted octahedral environment. The two mononegative hydrazoneoxime ligands are coordinated in the meridional configuration where the two thiol sulphur atoms and the two oxime nitrogen atoms are cis to each other, while the imine nitrogen atoms are trans. The oxime proton O2H is involved in a reciprocal bifurcated hydrogen bond formation with both N2 and S3 of the adjacent molecule giving rise to hydrogen bonded dimer. This dimeric structure is further stabilized by a pair of reciprocal CH?O interactions. A one dimensional chain of alternating dimeric unit and water molecule propagating along the c-axis is formed via hydrogen bond formation between the oxime O1 oxygen and the bridged water molecule proton.  相似文献   

16.
Hydrothermal synthesis has afforded three nickel coordination polymers incorporating both aromatic dicarboxylates and the kinked and hydrogen bonding capable organodiimine 4,4′-dipyridylamine (dpa). These were characterized by single-crystal X-ray diffraction, infrared spectroscopy, and thermogravimetric analysis. [Ni(1,2-phda)(dpa)(H2O)]n (1,2-phda = 1,2-phenylenediacetate, 1) displays (4,4) rhomboid grid-like 2D layers that aggregate into 3D through O–H?O hydrogen bonding. Shortening one of the pendant arms of the dicarboxylate ligand resulted in a shift to (6,3) herringbone style 2D coordination layer motifs in {[Ni(hmph)(dpa)] · 1.33H2O}n (hmph = homophthalate, 2), which stack in an AA′B pattern. [Ni(1,3-phda)(dpa)(μ-H2O)0.5]n (1,3-phda = 1,3-phenylenediacetate, 3) manifests a canted primitive cubic type coordination polymer lattice constructed from dinuclear {Ni2(μ-H2O)} kernels linked into 3D through tethering 1,3-phda and dpa ligands. Analysis of the variable temperature magnetic susceptibility of 3 indicated the presence of antiferromagnetic superexchange within its dinuclear units (g = 2.290(2), J = −4.21(2) cm−1).  相似文献   

17.
The synthesis of Ni(dtc)2 [dtc = diethyldithiocarbamate] has been achieved by the interaction of NiL(ClO4)2 with sodium diethyldithiocarbamate. Although single crystal structure of this complex was already reported (R = 10.6%), we were able to refine crystal structure up to R = 2.99%. We also observed rare C-H?Ni anagostic interactions generally exhibited by d8 complexes which were overlooked previously. To investigate the structure of Ni(dtc)2 in solution, variable temperature NMR spectra in solution have also been recorded between 25 and −50 °C. Ni(dtc)2 was also tested for antibacterial and antifungal activities. It showed higher activity against the bacteria and fungi than the known antibiotics.  相似文献   

18.
In this work, we describe for first time, the structure and magnetic characterization of the one dimensional catena cis-[Ni(μ-ox)(H2O)2] (1), which was obtained by solvothermal synthesis. Cis-[Ni(μ-ox)(H2O)2] crystallizes in a C2/c spatial group. The asymmetric unit contains only one type of nickel atom, oxalate ligand and water molecules. The chain backbone is constructed by the bis-chelating coordination mode of the oxalate ligand, presenting a zigzag chain in the [1 0 1] direction. The nickel ions have a distorted octahedral geometry, surrounded by six oxygens, four of them from two different oxalate ligands and the other two from the cis-coordinated water molecules. Thermal dependence of the magnetic susceptibility of (1) was studied in a temperature range of 2.5-255 K, at applied fields of 0.10 and 0.25 kOe. The plot of χMT(T) shows antiferromagnetic interactions between the Ni(II) centres. The experimental data were fitted between 255 and 30 K, using an empirical expression for a chain of equally spaced Ni(II) centres. The best fit of the experimental date gave a J value of −57 cm−1, which is much higher that the obtained for the trans-analogue. Irreversibility between ZFC and FC measurements below 9 K was observed, indicating some kind of magnetic ordering.  相似文献   

19.
Two novel organic-inorganic hybrid arsenic-vanadates, [{Ni(en)2}4(4,4′-bipy)4{Ni(H2O)2}]2[As8V14O42(NO3)]4·16H2O 1 and [Ni(en)2(H2O)2]2[{Ni(en)2(H2O)}2As8V14O42(NO3)][{Ni(en)2}As8V14O42(NO3)]·6H2O 2 are reported in this study. Crystal data for compound 1: Tetragonal, I4/m, a=27.507(4) Å, b=27.507(4) Å, c=22.101(4) Å; V=16722(5) Å3, Z=2, R(final)=0.0508. Crystal data for compound 2: Triclinic, P-1, a=11.530(2) Å, b=14.883(3) Å, c=21.330(4) Å, α=76.94(3)°, β=76.58(3)°, γ=69.54(3)°, V=3293.4(1) Å3, Z=1, R(final)=0.0559. The boxlike structure of compound 1 is designed from [{Ni(en)2}4(4,4′-bipy)4{Ni(H2O)2}] sheets pillared by [α-As8V14O42] clusters, which represents the first mixed-organic ligand-decorated tetrameric As-V-O cluster. Compound 2 is constructed from the rarely [β-As8V14O42] clusters and Ni coordination complex fragments. The electrochemical property and magnetic property of compound 1 have been studied.  相似文献   

20.
Four novel molecular square grids were achieved by self-assembly using the flexible ligands bis(di-2-pyridyl ketone) thiocarbohydrazone (H2L1), bis(quinoline-2-carbaldehyde) thiocarbohydrazone (H2L2), bis(di-2-pyridyl ketone) carbohydrazone (H2L3) and bis(2-benzoylpyridine) carbohydrazone (H2L4). Three complexes were given a general formula of [Ni(HL)]4[PF6]4 · nH2O and one [Ni2(HL2)L2]2(PF6)2 · 7H2O. The MALDI-MS spectra reveal the formation of tetranuclear molecular squares. The square grid of the Ni(II) centers in all the complexes were organized by deprotonated ligands. The complex [Ni(HL1)]4[PF6]4 · 11H2O crystallized as [Ni(HL1)]4(PF6)4 · 0.5 CH3CH2OH · 2.8H2O and X-ray study revealed octahedral geometries around the Ni(II) centers. Variable temperature magnetic studies suggest intramolecular antiferromagnetic coupling between the Ni(II) electrons by a super exchange mechanism through intervening sulfur/oxygen atoms.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号