首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 890 毫秒
1.
Glycopeptide thioester comprising the sequence of extracellular matrix metalloproteinase inducer (emmprin) (34-58) was prepared and condensed with a dendrimer core having eight amino groups by the thioester method. The desired product, a glycopeptide dendrimer carrying an N-linked core pentasaccharide of about 30 kDa, was successfully isolated by preparative electrophoresis and characterized by mass analysis.  相似文献   

2.
Novel and well‐defined dendrimer‐star, block‐comb polymers were successfully achieved by the combination of living ring‐opening polymerization and atom transfer radical polymerization on the basis of a dendrimer polyester. Star‐shaped dendrimer poly(?‐caprolactone)s were synthesized by the bulk polymerization of ?‐caprolactone with a dendrimer initiator and tin 2‐ethylhexanoate as a catalyst. The molecular weights of the dendrimer poly(?‐caprolactone)s increased linearly with an increase in the monomer. The dendrimer poly(?‐caprolactone)s were converted into macroinitiators via esterification with 2‐bromopropionyl bromide. The star‐block copolymer dendrimer poly(?‐caprolactone)‐block‐poly(2‐hydroxyethyl methacrylate) was obtained by the atom transfer radical polymerization of 2‐hydroxyethyl methacrylate. The molecular weights of these copolymers were adjusted by the variation of the monomer conversion. Then, dendrimer‐star, block‐comb copolymers were prepared with poly(L ‐lactide) blocks grafted from poly(2‐hydroxyethyl methacrylate) blocks by the ring‐opening polymerization of L ‐lactide. The unique and well‐defined structure of these copolymers presented thermal properties that were different from those of linear poly(?‐caprolactone). © 2006 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 44: 6575–6586, 2006  相似文献   

3.
A poly(amide)‐based dendrimer was synthesized and functionalized with the membrane‐interacting peptide gH(625–644) (gH625) derived from the herpes simplex virus type 1 (HSV‐1) envelope glycoprotein H, which has previously been shown to assist in delivering large cargoes across the cellular membrane. We demonstrate that the attachment of the gH625 peptide sequence to the termini of a dendrimer allows the conjugate to penetrate into the cellular matrix, whereas the unfunctionalized dendrimer is excluded from translocation. The peptide‐functionalized dendrimer is rapidly taken into the cells mainly through a non‐active translocation mechanism. Our results suggest that the presented peptidodendrimeric scaffold may be a promising material for efficient drug delivery.  相似文献   

4.
A new AB2 type building block for synthesis of dendritic compounds is made starting from Michael addition of 2 equiv of 3-hydroxyacetophenone to acrylate, followed by decarboxylation and deprotection of either carboxyl or hydroxyl protecting groups. [G1]-[G4] dendrons and [G2] dendrimer were synthesized by the reiterative [hydrogenolysis then DCC/DPTS coupling] sequence using a combination of convergent and divergent growth methods.  相似文献   

5.
A poly(amidoamine) (PAMAM) dendrimer composite membrane with an excellent CO2/N2 separation factor was developed in-situ. The In-situ Modification (IM) method was used to modify the surface of commercial porous membranes, such as ultrafiltration membranes, to produce a gas selective layer by controlling the interface precipitation of the membrane materials in the state of a received membrane module. Using the IM method, a chitosan layer was prepared on the inner surface of a commercially available ultrafiltration membrane as a gutter layer, in order to affix PAMAM dendrimer molecules on the porous substrate. After chitosan treatment, the PAMAM dendrimer was impregnated into the gutter layer to form a PAMAM/chitosan hybrid layer. The CO2 separation performance of the resulting composite membrane was tested at a pressure difference of 100 kPa and a temperature of 40 °C, using a mixed CO2 (5 vol%)/N2 (95 vol%) feed gas. The PAMAM dendrimer composite membrane, with a gutter layer prepared from ethylene glycol diglycidyl ether and a 0.5 wt% chitosan solution of two different molecular weight chitosans, revealed an excellent CO2/N2 separation factor and a CO2 permeance of 400 and 1.6 × 10−7 m3 (STP) m−2 s−1 kPa−1, respectively. SEM observations revealed a defect-free chitosan layer (thickness 200 nm) positioned directly beneath the top surface of the UF membrane substrate. After PAMAM dendrimer treatment, the hybrid chitosan/PAMAM dendrimer layer was observed with a thickness of 300 nm. XPS analysis indicated that the hybrid layer contained about 20–40% PAMAM dendrimer.  相似文献   

6.
An acid‐terminated poly(amino)ester dendrimer was studied by electrospray ionization tandem mass spectrometry to establish its fragmentation pathways, with the aim of using them to investigate the structure of any defective molecules generated during the dendrimer synthesis. This poly(amino)ester dendrimer could be ionized in both polarities but the most structurally relevant dissociation pathways were found from the deprotonated molecule in negative ion mode. The dissociation pattern of this dendrimer is fully described and supported by accurate mass measurements. The main dissociation reactions of the negatively charged polyacidic dendrimer were shown to consist of (i) the release of carbon dioxide and ethene within a branch, which proceeds as many times as intact neutral branches are available; and (ii) the elimination of an entire dendrimer arm. Monitoring the occurrence of these reactions together with any deviation from these two main routes allowed six major dendritic impurities to be structurally characterized. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
A fourth-generation rigid-chain pyridine-containing polyphenylene dendrimer is studied by inverse gas chromatography. Two types of sorbates are investigated: C7-C11 n-alkanes and C6H6-C6H5C5H11 alkylbenzenes. In the range 35−150°C, specific retention volumes of the indicated sorbates are measured and their solubility coefficients are calculated. It is shown that aliphatic sorbates exhibit reduced solubility coefficients in the aromatic dendrimer compared to those observed for aliphatic polymers and the earlier studied carbosilane dendrimer. At the same time, alkylbenzenes are characterized by enhanced solubility coefficients and this effect is more pronounced for the first members of the homologous series. An analysis of excess partial molar thermodynamic functions shows that π-electron interactions in the dendrimer and among dendrimer and aromatic sorbates are responsible for the thermodynamic properties of the dendrimer under study.  相似文献   

8.
A polyglycerol dendrimer monomolecularly imprinted with d-(−)-fructose (Fru) was synthesized. The dendrimer formed adducts with several monosaccharides, Fru, d-(+)-galactose, d-(+)-glucose, d-(+)-mannose, and methyl-α-d-mannopyranoside (MMan), by removal of four water molecules. The dendrimer preferred Fru in the absence of N,N,N′,N′-tetramethyldiaminomethane (TMDAM), whereas it preferred MMan in the presence of TMDAM.  相似文献   

9.
Amide and ester conjugates of aceclofenac with polyamidoamine (PAMAM-G0) dendrimer zero generation and dextran (40 kDa) polymeric carrier, respectively, are presented. The prepared conjugates were characterized by UV, TLC, HPLC, IR, and 1H NMR spectroscopy. The average degrees of substitution of amide and ester conjugates were determined and found to be (12.5 ± 0.24) % and (7.5 ± 0.25) %, respectively. The in vitro hydrolysis studies showed that dextran ester conjugate hydrolyzed faster in a phosphate buffer solution of pH 9.0 as compared to PAMAM dendrimer G0 amide conjugate, and followed the first order kinetics. No amount of the drug was regenerated at pH 1.2 in simulated gastric fluid. The dextran conjugate showed short half-life as compared to the PAMAM dendrimer conjugate. Anti-inflammatory and analgesic activities of the dendrimer conjugate were found to be similar to those of the standard drug. Results of chronic ulceroginic activity showed deep ulceration and high ulcer index for aceclofenac, whereas lower ulcer index was found for the PAMAM dendrimer and dextran (40 kDa) conjugates. Experimental data suggest that PAMAM dendrimer and dextran (40 kDa) can be used as carriers for the sustained delivery of aceclofenac along with a remarkable reduction in gastrointestinal toxicity.  相似文献   

10.
The coupling reactions of ethynylferrocene with trihalogenoarenes do not lead to ethynylferrocenyl arenes that are soluble enough to form the basis of a suitable construction of stiff ferrocenylethynyl arene‐cored dendrimers, which explains the previous lack of reports on stiff ferrocenyl dendrimers. However, rigid ferrocenyl‐terminated dendrimers have been synthesized from 1,3,5‐tribromo‐ and triiodobenzene through Sonogashira and Negishi reactions with 1,2,3,4,5‐pentamethyl‐1′‐ethylnylferrocene ( 1 a ), according to 1→2 connectivity. With compound 1 a , the construction of a soluble dendrimer ( 10 a ) that contained 12 ethynylpentamethylferrocenyl termini was achieved. Stiff dendrimer 10 a shows a single, reversible cyclic voltammetry (CV) wave (with adsorption), which disfavors the hopping heterogeneous electron‐transfer mechanism that is postulated for redox‐terminated dendrimers that contain flexible tethers. The selectivity of these Sonogashira reactions allows the synthesis of an arene‐cored dendron ( 2 c ) that contains both ethynylferrocenyl and 1,2,3,4,5‐pentamethyl‐ferrocenylethynyl redox groups, thus leading to the construction of a dendrimer ( 7 c ) that contains both types of differently substituted ferrocenyl groups with two well‐separated reversible CV waves. Upon selective oxidation, this mixed dendrimer ( 7 c ) leads to a class‐II mixed‐valence dendrimer, 7 c [PF6]3, as shown by Mössbauer spectroscopy, whereas oxidation of the related fully pentamethylferrocenylated dendrimer ( 7 a ) leads to the all‐ferricinium dendrimer, 7 a [PF6]6.  相似文献   

11.
The aim of this study was to improve the aqueous solubility of highly hydrophobic but selective PDE4 inhibitor N-(3,4-dihydro-2h-1,5-benzodioxepin-7-yl) pyridine-4-carboxamide by associating it with polyamidoamine dendrimer. The PAMAM dendrimer restraining ethylenediamine core synthesized by a divergent approach was utilized for encapsulation. The solubility of conjugates was evaluated on the basis of concentration and generation of the dendrimer, pH of the solution, and temperature. The phase solubility diagram confirmed an increase in aqueous solubility of drug with increase in dendrimer concentration with respect to pH in the order 9.0 > 7.0 > 4.0. Moreover, values of thermodynamic parameters such as negative value of ΔHo, positive value of ΔSo and ΔGo reflects an exothermic complexation, presence of number of particles and spontaneity of the complexation. Overall, investigations validate the enhancement in solubility of drug after complexation with polyamidoamine dendrimer which further confirmed promising bioactivity of the drug-dendrimer conjugates.  相似文献   

12.
The thermal properties of twelve Janus-type dendrimers up to the second generation were evaluated by termogravimetric analysis (TGA) and differential scanning calorimetry (DSC). Compounds consist of the dendritic bisMPA based polyester moieties, and either 3,4-bis-dodecyloxybenzoic acid, 3,5-bis-dodecyloxybenzoic acid or 3,4,5-tris-dodecyloxybenzoic acid moieties, attached to opposite sides of the pentaerythritol core. The thermal stability of the compounds was evaluated by TGA, displaying onset decomposition temperatures (Td) at around 250 °C. DSC measurements upon heating and cooling confirmed that OH terminated Janus dendrimers featuring large polarity difference in opposite sides display liquid crystalline phases with exception of 3,5-type G1 dendrimer; while acetonide terminated dendrimers displayed merely melting transitions. Dendrimers having terminal alkyl chains at positions 3,4 or 3,4,5 in aromatic moieties exhibited enantiotropic mesophases. However, the thermal behavior of the dendrimers with 3,5-substitution pattern was different: the 3,5-type G1 dendrimer exhibit a lack of mesomorphic transition, and in the case of the 3,5-type G2 dendrimer, the mesophase was absent in the first heating scan but was observed during the subsequent cooling and heating scans at the rate of 10 °C/min.  相似文献   

13.
The design and synthesis of a new dendrimer–poly(ethylene glycol) (PEG) conjugate that may be used as a model drug carrier are described. The starting material is a polyether dendrimer with two different types of chain end functionalities. The dendritic assembly is made water soluble through attachment of short PEG chains to the dendrimer via one type of functionality. The remaining chain end functionalities then were used to incorporate model drug molecules of varying polarity into the modified dendrimer. Cholesterol and two amino acid derivatives were selected as model drugs for attachment through their respective hydroxyl, carboxylic acid, and amino functional groups to the dendrimer via carbonate, ester, and carbamate linkages. The resulting water-soluble dendrimer-model drug conjugates were characterized by matrix-assisted laser desorption ionization time of flight (MALDI-TOF) mass spectrometry. © 1999 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 37: 3492–3503, 1999  相似文献   

14.
A series of rigid polyphenylene, free-base porphyrin-containing dendrimers terminated with either dimethoxybenzene or benzoquinone end-groups were prepared by a combined divergent and convergent synthesis. Unlike previous routes for preparing polyphenylene dendrimers that are incompatible with end-groups bearing certain functional moieties, the synthetic methodology chosen for this work enables incorporation of functional groups on the dendrimer end-groups during preparation of the dendrimer wedges and during synthesis of the final dendrimer. The basic strategy utilized a convergent preparation of dendrimer wedges using Suzuki coupling conditions, which were then either attached to a porphyrin core in a divergent coupling step or cyclized to form the porphyrin dendrimer in a convergent step. The latter approach was found to be more general and resulted in higher yields and more readily separated products. Steady-state absorption measurements for these dendrimers showed Soret and Q-band absorptions typical of free-base porphyrins. Preliminary steady-state fluorescence measurements of these dendrimers indicate quenching of the S1 state of the free-base porphyrin in all benzoquinone-containing dendrimers that is attributed to efficient electron-transfer from the excited porphyrin to the benzoquinone end-groups. The amount of fluorescence quenching was in good agreement with the number of benzoquinone groups at the dendrimer periphery and the distance between the porphyrin and benzoquinone groups as calculated by semiempirical (AM1) molecular orbital calculations.  相似文献   

15.
SiO2–poly(amidoamine) (PAMAM) dendrimer hybrids were synthesized via (1) a Michael addition reaction between the dendrimer and 3‐(trimethoxysilyl) propyl acrylate, (2) the dissolution of the formed compound in methanol, and (3) the mixing of the latter solution with a methanol solution of partly hydrolyzed tetraethylorthosilicate (TEOS) and its casting on a glass substrate. 1H NMR indicated that in the first step, 77% of the secondary amines were converted into tertiary amines when the fourth‐generation dendrimer was employed and 46% were converted when the second‐generation dendrimer was used. The final SiO2–PAMAM dendrimer hybrids were obtained via the hydrolysis and condensation of the compound obtained via the Michael addition and the methanol solution of partly hydrolyzed TEOS. The compartmentalized structure of the hybrids due to the compartments of the dendrimers could be controlled by changing the dendrimer and the amount of TEOS. Scanning electron microscopy and transmission electron microscopy micrographs provided information about the structure of the hybrids. Like the PAMAM dendrimer, the SiO2–PAMAM dendrimer hybrids exhibited a high metal ion complexing capacity because of the presence of the compartments of the dendrimer; they can be, however, much more easily handled, and, as demonstrated by thermogravimetric experiments, have much higher thermal resistance. © 2000 John Wiley & Sons, Inc. J Polym Sci A: Polym Chem 38: 1443–1449, 2000  相似文献   

16.
We report the first results of persistent spectral hole burning of dendrimer porphyrins having three‐, four‐, or five‐layered aryl ether dendritic arrays. We evaluate structural relaxations of dendrimer framework around the porphyrin core at low temperatures. A large environmental change around the porphyrin core, as evaluated from the hole area, was suppressed in dendrimer porphyrins of higher generation numbers, whereas a small environmental change, as evaluated from hole width, showed no dependence on the number of generations. The dendrimer porphyrins showed sharp holes at 20 K, suggesting a long dephasing time and the suppression of spontaneous spectral diffusion. The results of dendrimer‐embedded polymer sample indicated that the structural relaxation of polymer chain outside the dendrimer does not have an influence on the resonant frequency of the porphyrin core. © 2001 John Wiley & Sons, Inc. J Polym Sci Part B: Polym Phys 40: 210–215, 2002  相似文献   

17.
A novel DNA electrochemical biosensor for label-free determination of DNA sequence related to the Avian Influenza Virus (AIV) genotype was demonstrated in this paper. First, the multi-walled carbon nanotubes–cobalt phthalocyanine (MWNTs–CoPc) nanocomposite and poly (amidoamine) (PAMAM) dendrimer (generation 4.0) were modified on the glassy carbon electrode (GCE) sequentially. Then, DNA probes were successfully immobilized on the modified electrode with G4 PAMAM dendrimer acting as the coupling agent. The hybridization events were monitored by differential pulse voltammetry (DPV) measurement based on the oxidation signals of guanine without any external labels. Under the optimal conditions, the difference in guanine oxidation signal of the probe modified GCE in the absence and presence of complementary target (ΔIp) was linear with the logarithmic value of the complementary target concentration from 0.01 to 500 ng/ml with a correlation coefficient of 0.998 and a detection limit of 1.0 pg/ml.  相似文献   

18.
The synthesis of a generation 5 (G5) poly(amidoamine) (PAMAM) dendrimer platform having cyclooctyne ligands that were subsequently be used for a copper-free Huisgen 1,3-dipolar cycloaddition (click reaction) with azido modified methotrexate is described. The G5 PAMAM dendrimer was first partially (70%) acetylated and then coupled with 20 cyclooctyne ligands through amide bonds. The remaining primary amine groups on the dendrimer surface were neutralized by acetylation. The platform was then ‘clicked’ with different numbers (5, 10, and 17) of γ-azido functionalized methotrexate. The copper-free click reactions were stoichiometric with excellent yields.  相似文献   

19.
Binding of Cd2+ by PAMAM 4.5 dendrimer was studied by equilibrium dialysis, isothermal titration calorimetry and zeta-potential measurement. The following binding parameters were obtained: n = 23.8 ± 9.5, Kb = 4.7 ± 0.9 × 103 in water; and n = 41.3 ± 13.4, Kb = 2.1 ± 0.8 × 103 in 0.15 mol/l phosphate-buffered saline. The location of the bound Cd2+ is discussed. The interactions between bovine serum albumin, PAMAM 4.5 dendrimer and cadmium were analyzed using fluorescence and equilibrium dialysis. The competition between Cd2+ binding to BSA and PAMAM 4.5 dendrimer was investigated. It is proposed that PAMAM 4.5 dendrimer could be successfully used for extracting Cd2+ from aqueous solutions (environmental protection).  相似文献   

20.
Phenylazomethine dendrimers (DPA) can precisely incorporate metal chlorides onto the imine sites in a stepwise fashion. Such precise dendrimer–metal complexes allow the preparation of size‐controlled subnanometer metal particles. We now propose a novel approach for the fabrication of size‐controlled subnanometer metal oxide dots isolated on a substrate using two different‐type dendrimers. One is a fourth‐generation phenylazomethine dendrimer (DPAG4) and the other is a benzylether dendrimer (BzEG3) with a zinc porphyrin core. Even though the diameter of BzEG3 corresponds to that of DPAG4, BzEG3 has no metal‐complexing site. Upon dip coating on a highly oriented pyrolytic graphite substrate by the mixed solution of the metal chloride‐assembling DPAG4 molecules and BzEG3 molecules, the dendrimer monolayer was immobilized on the substrate. The concentration of the dendrimer mixture was determined in order to separate each DPAG4–metal chloride complex molecule by BzEG3. Monodispersed metaloxide nanodot arrays could be obtained from the dendrimer monolayer in which DPAG4–metal chloride complex molecule is well isolated by the BzEG3 as a spacer after the hydrolysis of metal chlorides followed by the complete removal of dendrimers. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号