首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
Density-dependent parametrization models of the nucleon-meson coupfing constants, including the isovector scalar δ-field, are applied to asymmetric nuclear matter. The nuclear equation of state (EOS) and the neutron star properties are studied in a relativistic Lagrangian density, using the relativistic mean field (RMF) hadron theory. It is known that the δ-field in the constant coupling scheme leads to a larger repulsion in dense neutron-rich matter and to a definite splitting of proton and neutron effective masses, finally influences the stability of the neutron stars. We use density-dependent models of the nucleon-meson couplings to study the properties of neutron star matter and to reexamine the (~-field effects in asymmetric nuclear matter. Our calculation shows that the stability conditions of the neutron star matter can be improved in presence of the δ-meson in the density-dependent models of the coupling constants. The EOS of nuclear matter strongly depends on the density dependence of the interactions.  相似文献   

2.
Deconfinement phase transition and condensation of Goldstone bosons in neutron star matter are investigated in a chiral hadronic model (also referred as to the FST model) for the hadronic phase (HP) and in the color-flavor-locked (CFL) quark model for the deconfined quark phase. It is shown that the hadronic-CFL mixed phase (MP) exists in the center of neutron stars with a small bag constant, while the CFL quark matter cannot appear in neutron stars when a large bag constant is taken. Color superconductivity softens the equation of state (EOS) and decreases the maximum mass of neutron stars compared with the unpaired quark matter. The K0 condensation in the CFL phase has no remarkable contribution to the EOS and properties of neutron star matter. The EOS and the properties of neutron star matter are sensitive to the bag constant B, the strange quark mass ms and the color superconducting gap Δ. Increasing B and ms or decreasing Δ can stiffen the EOS which results in the larger maximum masses of neutron stars.  相似文献   

3.
We investigate the properties of the neutron star with relativistic mean-field models. We incorporate in the quantum hadrodynamics and in the quark-meson coupling models a possible reduction of meson masses in nuclear matter. The equation of state for neutron star matter is obtained and is employed in Oppenheimer-Volkov equation to extract the maximum mass of the stable neutron star. We find that the equation of state, the composition and the properties of the neutron stars are sensitive to the values of the meson masses in medium.  相似文献   

4.
Whether or not the deconfined quark phase exists in neutron star cores is an open question. We use two realistic effective quark models, the three-flavor Nambu-Jona-Lasinio model and the modified quark-meson coupling model, to describe the neutron star matter. We show that the modified quark-meson coupling model, which is fixed by reproducing the saturation properties of nuclear matter, can be consistent with the experimental constraints from nuclear collisions. After constructing possible hybrid equations of state (EOSes) with an unpaired or color superconducting quark phase with the assumption of the sharp hadron-quark phase transition, we discuss the observational constraints from neutron stars on the EOSes. It is found that the neutron star with pure quark matter core is unstable and the hadronic phase with hyperons is denied, while hybrid EOSes with a two-flavor color superconducting phase or unpaired quark matter phase are both allowed by the tight and most reliable constraints from two stars Ter 5 I and EXO 0748-676. And the hybrid EOS with an unpaired quark matter phase is allowed even compared with the tightest constraint from the most massive pulsar star PSR J0751+1807.  相似文献   

5.
The microscopic structure of the Wigner-Seitz (W-S) cell in the inner crust of neutron stars is investigated with the relativistic mean field (RMF) approach. The W-S cell is composed of a cluster of neutrons and protons localized in a region around the centre and surrounded by a neutron gas of approximately uniform density. In order to generate the density of the W-S cell, appropriate boundary conditions in the calculation of the single-particle wavefunctions are necessary. We emphasize on the choice of the boundary conditions in the RMF approach. Three kinds of boundary conditions are suggested. The properties of the W-S cell with the three kinds of boundary conditions are investigated. The neutron density distributions in the RMF and Hartree-Fock-Bogoliubov (HFB) models are compared. It is found that the neutron gas densities of the W-S cell in the RMF model is higher than those obtained in the HFB model.  相似文献   

6.
The properties of infinite nuclear matter and neutron star are studied theoretically in relativistic mean-field (RMF) approach with three typical parameter sets NL1, NL-SH and TM1. It is found that all these new RMF parameter sets can very satisfactorily reproduce the properties of high density matter. Among these parameter sets, TM1, with a nonlinear ω term, reproduces a slightly smaller energy, piessure and neutron star mass than NL-SH and NL1. The ρ meson field has a large influence on the properties of neutron star and infinite nuclear matter. A detailed discussion for the significance of numerical results is also given.  相似文献   

7.
Available Skyrme parametrizations with hyperons are examined from the point of view of their suitability for applications to neutron stars. It is shown that the hyperons can attenuate or even remove the problem of ferromagnetic instability common to (nearly) all Skyrme parametrizations of the nucleon-nucleon interaction. At high density the results are very sensitive to the choice of the interaction. The selected parameter sets are then used to obtain the resulting properties of both cold neutron stars and hot protoneutron stars. The general features known from other models are recovered.  相似文献   

8.
Using the RMF theory to describe the neutron liquid region in the neutron star and the Fermi gas model or FMT, BPS,and BBP model to describe the crust of the neutron star (referred as Fermi gas+RMF and RMF* respectively),the properties of the neutron star are calculated and compared with those from the RMF theory. Although the EOS at low density has negligible influence on the maximum mass of the neutron star, and its corresponding central density, energy density, and pressure, it changes the mass-radius relationship of neutron stars considerably. The differences of the neutron star radius corresponding to maximum mass between the RMF theory and RMF* calculations are 0.23-0.33 km.  相似文献   

9.
A semi-microscopic self-consistent quantum approach developed recently to describe the inner-crust structure of neutron stars within the Wigner-Seitz (WS) method with the explicit inclusion of neutron and proton pairing correlations is further developed. In this approach, the generalized energy functional is used which contains the anomalous term describing the pairing. It is constructed by matching the realistic phenomenological functional by Fayans et al. for describing the nuclear-type cluster in the center of the WS cell with the one calculated microscopically for neutron matter. Previously, the anomalous part of the latter was calculated within the BCS approximation. In this work corrections to the BCS theory which are known from the many-body theory of pairing in neutron matter are included into the energy functional in an approximate way. These modifications have a sizable influence on the equilibrium configuration of the inner crust, i.e. on the proton charge Z and the radius R c of the WS cell. The effects are quite significant in the region where the neutron pairing gap is larger.  相似文献   

10.
Nuclear matter properties are calculated in the relativistic mean-field theory by using a number of different parameter sets. The result shows that the volume energy a1 and the symmetry energy J are around the acceptable values 16MeV and 30MeV, respectively; the incompressibility K0 is unacceptably high in the linear model, but assumes reasonable value if nonlinear terms are included; the density symmetry L is around 100MeV for most parameter sets, and the symmetry incompressibility K s has positive sign which is opposite to expectations based on the nonrelativistic model. In almost all parameter sets there exists a critical point (,), where the minimum and the maximum of the equation of state are coincident and the incompressibility equals zero, falling into ranges 0.014fm^-3 < < 0.039fm^-3 and 0.74 < ≤0.95; for a few parameter sets there is no critical point and the pure neutron matter is predicted to be bound. The maximum mass M NS of neutron stars is predicted in the range 2.45M ?M NS? 3.26M , the corresponding neutron star radius R NS is in the range 12.2km ?R NS? 15.1km. Received: 5 May 2000 / Accepted: 28 November 2000  相似文献   

11.
We investigate the role of Bose-Einstein condensation (BEC) of anti-kaons on the equation of state (EoS) and other properties of compact stars. In the framework of relativistic mean field model we determine the EoS for β-stable hyperon matter and compare it to the situation when anti-kaons condense in the system. We observe that anti-kaon condensates soften the EoS, thereby lowering the maximum mass of the stars. We also demonstrate that the presence of antikaon condensates in the high density core of compact stars may lead to a new mass sequence beyond white dwarf and neutron stars. The limiting mass of the new sequence stars is nearly equal to that of neutron star branch though they have distinctly different radii and compositions. They are called neutron star twins.  相似文献   

12.
Adjusting the suitable coupling constants in relativistic mean field (RMF) theory and focusing on thermal effect of an entropy per baryon (S) from 0 to 3, we investigate the composition and structure of massive protoneutron stars corresponding PSR J1614-2230 and PSR J0348+0432. It is found that massive protoneutron stars (PNSs) have more hyperons than cold neutron stars. The entropy per baryon will stiffen the equation of state, and the influence on the pressure is more obvious at low density than high density, while the influence on the energy density is more obvious at high density than low density. It is found that higher entropy will give higher maximum mass, higher central temperature and lower central density. The entropy per baryon changes from 0 to 3, the radius of a PNS corresponding PSR J0348+0432 will increase from 12.86 km to 19.31 km and PSR J1612-2230 will increase from 13.03 km to 19.93 km. The entropy per baryon will raise the central temperature of massive PNSs in higher entropy per baryon, but the central temperature of massive PNSs maybe keep unchanged in lower entropy per baryon. The entropy per baryon will increase the moment of inertia of a massive protoneutron star, while decrease gravitational redshift of a massive neutron star.  相似文献   

13.
We present results for the spin-1 color-spin-locking (CSL) phase using a NJL-type model in two-flavor quark matter for compact stars applications. The CSL condensate is flavor symmetric and therefore charge and color neutrality can easily be satisfied. We find small energy gaps ≃ 1MeV, which make the CSL matter composition and the EoS not very different from the normal quark matter phase. We keep finite quark masses in our calculations and obtain no gapless modes that could have strong consequences in the late cooling of neutron stars. Finally, we show that the region of the phase diagram relevant for neutron star cores, when asymmetric flavor pairing is suppressed, could be covered by the CSL phase.  相似文献   

14.
We develop a chiral SU(3) RMF model for octet baryons, as an extension of the recently developed chiral SU(2) RMF model with logarithmic sigma potential. For Σ -meson coupling, strong repulsion (SR) and weak repulsion (WR) cases are examined in existing atomic shift data of Σ- . In both of these cases, we need an attractive pocket of a few MeV depth around nuclear surface.  相似文献   

15.
The equation of state of neutron stars is studied in the newly developed density dependent relativistic Hartree-Fock (DDRHF) theory with the effective interaction PKO1 and applied to describe the properties of neutron stars. The results are compared with the recent observational data of compact stars and those calculated with the relativistic mean field (RMF) effective interactions. The maximum mass of neutron stars calculated with PKO1 is about 2.45 M☉, which consists with high pulsar mass from PSR B1516+02B recently reported. The influence of Fock terms on the cooling of neutron stars is discussed as well.  相似文献   

16.
Neutron star models with hyperon-mixed core are studied by a realistic approach to use the YN and the YY interactions consistent with hypernuclear data. From the compatibility of the theoretical maximum mass with the observed neutron star mass 1.44 M of PSR1913+16, the necessity of some extra repulsion in hypernuclear systems, e.g., a repulsion from three-body force, is stressed. It is noted that the increase of baryon degrees of freedom to avoid the short-range repulsion effectively is an essential mechanism causing the Y-mixed phase. Received: 1 May 2001 / Accepted: 4 December 2001  相似文献   

17.
18.
利用非对称核物质状态方程对中子星的质量和半径的研究   总被引:1,自引:0,他引:1  
在温度、密度及同位旋相关的核物质状态方程的基础上,通过求解Tol-man-Oppenheimer?Volkoff方程得到了中子星的质量与中心密度的关系,发现随着中心密度的变化,中子星存在一个最大质量.同时计算结果表明,中子星的最大质量与核物质状态方程的不可压缩系数、有效质量及对称能强度系数等密切相关.对中子星半径的研究表明,较硬的核物质状态方程给出的中子星半径较大,而且较大的对称能强度系数和较大的核子有效质量也会给出较大的中子星半径.  相似文献   

19.
We summarize the constraints on the equation of state of high-density nuclear matter derived from neutron star observations. The most stringent constraints are provided by the largest mass, the largest radius, the highest rotational frequency, and the maximum surface gravity observed for neutron stars. The combination of these constraints allows only nuclear equations of state which are quite stiff.  相似文献   

20.
利用Brueckner-Hartree-Fock方法,计算了β稳定中子星物质的状态方程以及三体核力的影响,特别是研究了三体核力对中子星物质中K介子凝聚的影响. 结果表明三体核力对β稳定中子星物质中出现K介子凝聚的临界密度以及中子星物质中各种粒子所占的比例均有重要影响. 三体核力的主要作用是降低了中子星物质中出现K介子凝聚的临界密度并使K凝聚相中的核物质更加接近于对称核物质.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号